NONLINEAR KIRCHHOFF-CARRIER WAVE EQUATION IN A UNIT MEMBRANE WITH MIXED HOMOGENEOUS BOUNDARY CONDITIONS

被引:0
作者
Nguyen Thanh Long [1 ]
机构
[1] Vietnam Natl Univ HoChiMinh City, Univ Nat Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
关键词
Nonlinear wave equation; Galerkin method; quadratic convergence; weighted Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the nonlinear wave equation problem u(tt) - B(parallel to u parallel to(2)(0), parallel to ur parallel to(2)(0) (u(rr) + 1/r u(r)) = f(r, t, u, u(r)), 0 < r < 1, 0 < t < T, [GRAPHICS] u(r)(1,t) + hu(1,t) = 0, u(r, 0) = (u) over tilde (0) (r), u(t)(r, 0) = (u) over tilde (1) (r). To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on ur and a coefficient function B of the form B = B(parallel to u parallel to(2)(0) = b(0) + parallel to u parallel to(2)(0) with b(0) > 0.
引用
收藏
页数:18
相关论文
共 24 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Binh D. T. T., 2002, MATH COMPUT MODEL, V34, P541
[3]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[4]  
DINH APN, 1986, DEMONSTRATIO MATH, V19, P45
[5]   LOCAL SOLUTIONS FOR A NONLINEAR DEGENERATE HYPERBOLIC EQUATION [J].
EBIHARA, Y ;
MEDEIROS, LA ;
MIRANDA, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :27-40
[6]  
Hozoya M., 1991, J FAC SCI U TOKYO 4, V38, P225
[7]  
Kirchhoff GR., 1876, VORLESUNGEN MATH PHY
[8]  
Lakshmikantham V., 1969, DIFFERENTIAL INTEGRA, V1
[9]  
LAN HB, 1993, COMP MATH MATH PHYS+, V33, P1171
[10]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE