Low-Complexity Hybrid Beamforming for Massive MIMO Systems in Frequency-Selective Channels

被引:17
|
作者
Payami, Sohail [1 ]
Sellathurai, Mathini [2 ]
Nikitopoulos, Konstantinos [1 ]
机构
[1] Univ Surrey, Inst Commun Syst, 5G Innovat Ctr, Wireless Syst Lab, Guildford GU2 7XH, Surrey, England
[2] Heriot Watt Univ, Inst Sensors Signals & Syst, Edinburgh EH14 4AS, Midlothian, Scotland
来源
IEEE ACCESS | 2019年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
Frequency-selective channels; hybrid analog-and-digital beamforming; massive MIMO;
D O I
10.1109/ACCESS.2019.2905430
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hybrid beamforming for frequency-selective channels is a challenging problem, as the phase shifters provide the same phase shift to all the subcarriers. The existing approaches solely rely on the channel's frequency response, and the hybrid beamformers maximize the average spectral efficiency over the whole frequency band. Compared to state-of-the-art, we show that substantial sum-rate gains can be achieved, both for rich and sparse scattering channels, by jointly exploiting the frequency- and time-domain characteristics of the massive multiple-input multiple-output (MIMO) channels. In our proposed approach, the radio frequency (RF) beamformer coherently combines the received symbols in the time domain and, thus, it concentrates the signal's power on a specific time sample. As a result, the RF beamformer flattens the frequency response of the "effective" transmission channel and reduces its root-mean-square delay spread. Then, a baseband combiner mitigates the residual interference in the frequency domain We present the closed-form expressions of the proposed beamformer and its performance by leveraging the favorable propagation condition of massive MIMO channels, and we prove that our proposed scheme can achieve the performance of fully digital zero-forcing when the number of employed phases shifter networks is twice the resolvable multipath components in the time domain.
引用
收藏
页码:36195 / 36206
页数:12
相关论文
共 50 条
  • [21] A Low-Complexity Multiuser Adaptive Modulation Scheme for Massive MIMO Systems
    Zhou, Yuehao
    Zhong, Caijun
    Jin, Shi
    Huang, Yongming
    Zhang, Zhaoyang
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (10) : 1464 - 1468
  • [22] Securing Massive MIMO Systems: Secrecy for Free With Low-Complexity Architectures
    Bereyhi, Ali
    Asaad, Saba
    Mueller, Ralf R.
    Schaefer, Rafael F.
    Fischer, Georg
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (09) : 5831 - 5845
  • [23] A New Low-Complexity WMMSE Algorithm for Downlink Massive MIMO Systems
    Zhou, Ningxin
    Wang, Zheng
    He, Lanxin
    Huang, Yang
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 1096 - 1101
  • [24] Low-Complexity MMSE Receiver Design for Massive MIMO OTFS Systems
    Sheikh, Mudasir Ahmad
    Singh, Prem
    Budhiraja, Rohit
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (11) : 2759 - 2763
  • [25] Low-Complexity Symbol Detection for Index Modulated Massive MIMO Systems
    Mandloi, Manish
    Sharma, Sanjeev
    Pattanayak, Prabina
    Gurjar, Devendra S.
    2020 ADVANCED COMMUNICATION TECHNOLOGIES AND SIGNAL PROCESSING (IEEE ACTS), 2020,
  • [26] DISTRIBUTIVE ESTIMATION OF FREQUENCY SELECTIVE CHANNELS FOR MASSIVE MIMO SYSTEMS
    Zaib, Alam
    Masood, Mudassir
    Ghogho, Mounir
    Al-Naffouri, Tareq Y.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 889 - 893
  • [27] A Low-Complexity Detection Method Based on Iteration for Massive MIMO Systems
    Li, Huan
    Zhao, Xuying
    Guo, Chen
    Wang, Xiaoqin
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 487 - 491
  • [28] A Low-Complexity Signal Detection Approach in Uplink Massive MIMO Systems
    Liang, Zhuojun
    Ding, Chunhui
    He, Guanghui
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (07): : 1115 - 1119
  • [29] DECOUPLED, RANK REDUCED, MASSIVE AND FREQUENCY-SELECTIVE ASPECTS IN MIMO INTERFERING BROADCAST CHANNELS
    Lejosne, Yohan
    Bashar, Manijeh
    Slock, Dirk
    Yi Yuan-Wu
    2014 6TH INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING (ISCCSP), 2014, : 517 - 521
  • [30] Low Complexity Hybrid Precoding for mmWave Massive MIMO Systems
    Huang, Yu
    Liu, Chen
    Qian, Mujun
    Chen, Yan
    2019 IEEE 30TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2019, : 626 - 631