High capacity Li2MnSiO4/C nanocomposite prepared by sol-gel method for lithium-ion batteries

被引:94
作者
Liu, Shuangke [1 ]
Xu, Jing [1 ]
Li, Dezhan [1 ]
Hu, Yun [1 ]
Liu, Xiang [1 ]
Xie, Kai [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
关键词
Lithium-ion batteries; Lithium manganese silicate; Carbon-coated; High capacity; Sol-gel; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIALS; LI2FESIO4; MN;
D O I
10.1016/j.jpowsour.2012.12.126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high capacity Li2MnSiO4 (LMS)/C nanocomposite has been prepared by glucose assisted sol-gel method with in situ carbon coating. X-ray diffraction (XRD) measurements confirm the formation of orthorhombic structure with Pmn2(1) space group. Field emission scanning electron microscopy (FESEM) shows that the LMS/C powders consist of uniformly distributed nanoparticles with size in the range of 20 -50 nm and high-resolution transmission electron microscopy (HRTEM) confirms that amorphous carbon coat on the LMS nanocrystals. Electrochemical tests reveal that the LMS/C nanocomposite has a high initial discharge capacity of 253.4 mA h g(-1) at 10 mA g(-1) and superior rate capability (193.1 mA h g(-1) at 160 mA g(-1) and 149.9 mA h g(-1) at 320 mA g(-1)). The improved electrochemical performance is ascribed to coated carbon and nanoparticle size, which can enhance the electronic conductivity as well as lithium-ion diffusion coefficient. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 25 条
[1]   Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Kang, K. S. ;
Yoon, W. S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) :2470-2475
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   On-demand design of polyoxianionic cathode materials based on electronegativity correlations:: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J].
Arroyo-de Dompablo, M. E. ;
Armand, M. ;
Tarascon, J. M. ;
Amador, U. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) :1292-1298
[4]   On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J].
Arroyo-deDompablo, M. E. ;
Dominko, R. ;
Gallardo-Amores, J. M. ;
Dupont, L. ;
Mali, G. ;
Ehrenberg, H. ;
Jamnik, J. ;
Moran, E. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5574-5584
[5]  
Bard A.J., 2001, ELECTROCHEMICAL METH
[6]   Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J].
Belharouak, Ilias ;
Abouimrane, A. ;
Amine, K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20733-20737
[7]   Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries [J].
Chen, Zhongxue ;
Qiu, Shen ;
Cao, Yuliang ;
Ai, Xinping ;
Xie, Kai ;
Hong, Xiaobin ;
Yang, Hanxi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17768-17772
[8]   Characterization of Li2MnSiO4 and Li2eSiO4 cathode materials synthesized via a citric acid assisted sol-gel method [J].
Deng, C. ;
Zhang, S. ;
Fu, B. L. ;
Yang, S. Y. ;
Ma, L. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 120 (01) :14-17
[9]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[10]   Li2MnSiO4 as a potential Li-battery cathode material [J].
Dominko, R. ;
Bele, M. ;
Kokalj, A. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :457-461