Dense Arbitrarily Vertex Decomposable Graphs

被引:17
作者
Hornak, Mirko [2 ]
Marczyk, Antoni [1 ]
Schiermeyer, Ingo [3 ]
Wozniak, Mariusz [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[2] Safarik Univ, Inst Math, Kosice 04001, Slovakia
[3] Tech Univ Bergakad Freiberg, Fak Math & Informat, D-09596 Freiberg, Germany
关键词
Arbitrarily vertex decomposable graph; Traceable graph; Independence number; Perfect matching; TREES;
D O I
10.1007/s00373-011-1077-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order n is said to be arbitrarily vertex decomposable if for each sequence (n (1), . . . , n (k) ) of positive integers such that n (1) + center dot center dot center dot + n (k) = n there exists a partition (V (1), . . . , V (k) ) of the vertex set of G such that for each , V (i) induces a connected subgraph of G on n (i) vertices. The main result of the paper reads as follows. Suppose that G is a connected graph on n a parts per thousand yen 20 vertices that admits a perfect matching or a matching omitting exactly one vertex. If the degree sum of any pair of nonadjacent vertices is at least n - 5, then G is arbitrarily vertex decomposable. We also describe 2-connected arbitrarily vertex decomposable graphs that satisfy a similar degree sum condition.
引用
收藏
页码:807 / 821
页数:15
相关论文
共 17 条
[1]   A degree bound on decomposable trees [J].
Barth, D ;
Fournier, H .
DISCRETE MATHEMATICS, 2006, 306 (05) :469-477
[2]   Decomposable trees: a polynomial algorithm for tripodes [J].
Barth, D ;
Baudon, O ;
Puech, J .
DISCRETE APPLIED MATHEMATICS, 2002, 119 (03) :205-216
[3]  
Bermond J.C., 1976, P 5 BRIT COMB C AB 1, P41
[4]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[5]  
Cichacz S., 2006, Discussiones Mathematicae Graph Theory, V26, P291, DOI 10.7151/dmgt.1321
[6]  
Gyri E., 1978, C MATH SOC J BOLYAI, V1976, P485
[7]  
HORNAK M., 2003, OPUSCULA MATH, P49
[8]   On arbitrarily vertex decomposable trees [J].
Hornak, Mirko ;
Woiniak, Mariusz .
DISCRETE MATHEMATICS, 2008, 308 (07) :1268-1281
[9]   On-line arbitrarily vertex decomposable trees [J].
Hornak, Mirko ;
Tuza, Zsolt ;
Wozniak, Mariusz .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (11) :1420-1429
[10]   On-line arbitrarily vertex decomposable suns [J].
Kalinowski, Rafal ;
Pilsniak, Monika ;
Wozniak, Mariusz ;
Ziolo, Irmina A. .
DISCRETE MATHEMATICS, 2009, 309 (22) :6328-6336