Hopf bifurcation in the evolution of networks driven by spike-timing-dependent plasticity

被引:10
作者
Ren, Quansheng [1 ,2 ]
Kolwankar, Kiran M. [2 ,3 ]
Samal, Areejit [2 ,4 ,5 ]
Jost, Juergen [2 ,6 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Ramniranjan Jhunjhunwala Coll, Dept Phys, Bombay 400086, Maharashtra, India
[4] CNRS, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
[5] Univ Paris Sud, UMR 8626, F-91405 Orsay, France
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
OSCILLATIONS;
D O I
10.1103/PhysRevE.86.056103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the interplay of topology and dynamics in a neural network connected with spike-timing-dependent plasticity (STDP) synapses. Stimulated with periodic spike trains, the STDP-driven network undergoes a synaptic pruning process and evolves to a residual network. We examine the variation of topological and dynamical properties of the residual network by varying two key parameters of STDP: synaptic delay and the ratio between potentiation and depression. Our extensive numerical simulations of the leaky integrate-and-fire model show that there exists two regions in the parameter space. The first corresponds to fixed-point configurations, where the distribution of peak synaptic conductances and the firing rate of neurons remain constant over time. The second corresponds to oscillating configurations, where both topological and dynamical properties vary periodically, which is a result of a fixed point becoming a limit cycle via a Hopf bifurcation. This leads to interesting questions regarding the implications of these rhythms in the topology and dynamics of the network for learning and cognitive processing.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] [Anonymous], PHYS REV LETT
  • [2] Synaptic modification by correlated activity: Hebb's postulate revisited
    Bi, GQ
    Poo, MM
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 : 139 - 166
  • [3] Topological evolution of dynamical networks: Global criticality from local dynamics
    Bornholdt, S
    Rohlf, T
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (26) : 6114 - 6117
  • [4] Self-organized critical neural networks -: art. no. 066118
    Bornholdt, S
    Röhl, T
    [J]. PHYSICAL REVIEW E, 2003, 67 (06): : 5 - 066118
  • [5] Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
    Brunel, N
    Hakim, V
    [J]. NEURAL COMPUTATION, 1999, 11 (07) : 1621 - 1671
  • [6] Neuronal oscillations in cortical networks
    Buzsáki, G
    Draguhn, A
    [J]. SCIENCE, 2004, 304 (5679) : 1926 - 1929
  • [7] Statistical physics of social dynamics
    Castellano, Claudio
    Fortunato, Santo
    Loreto, Vittorio
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 591 - 646
  • [8] Cyclic dominance in adaptive networks
    Demirel, G.
    Prizak, R.
    Reddy, P. N.
    Gross, T.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04) : 541 - 548
  • [9] Gewaltig M.-O., 2007, SCHOLARPEDIA, V2, P1430, DOI 10.4249/scholarpedia.1430
  • [10] STDP in recurrent neuronal networks
    Gilson, Matthieu
    Burkitt, Anthony
    van Hemmen, J. Leo
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4