A MULTIPLE OPIAL TYPE INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

被引:27
作者
Andric, M. [1 ]
Pecaric, J. [2 ]
Peric, I. [3 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Zagreb, Fac Food Technol & Biotechnol, Zagreb 41000, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2013年 / 7卷 / 01期
关键词
Riemann-Liouville fractional derivative; composition identity; Opial type inequality; Laplace transform;
D O I
10.7153/jmi-07-13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove a multiple Opial type inequality for RL fractional derivatives which is proved for two factors and ordinary derivatives by Fink in [6]. Two methods are applied and a comparison of the obtained estimations is also given.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 11 条
[1]  
Agarwal R. P., 1995, Opial inequalities with applications in differential and difference equations
[2]  
ANASTASSIOU GA, 2001, DYNAMIC SYSTEMS APPL, V10, P395
[3]  
ANASTASSIOU GA, 2002, INT J MATH MATH SCI, V31, P85, DOI DOI 10.1155/S016117120201311X
[4]  
Andric M, 2011, DYNAM SYST APPL, V20, P383
[5]  
ANDRIC M., MATH INEQUA IN PRESS
[6]  
[Anonymous], 1960, Ann. Polon. Math.
[7]  
[Anonymous], 2006, Journal of the Electrochemical Society
[8]   ON OPIALS INEQUALITY FOR F(N) [J].
FINK, AM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :177-181
[9]   On an Opial type inequality due to Fink [J].
Pang, PYH ;
Agarwal, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) :748-753
[10]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications