A MULTIPLE OPIAL TYPE INEQUALITY FOR THE RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES

被引:27
作者
Andric, M. [1 ]
Pecaric, J. [2 ]
Peric, I. [3 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Zagreb, Fac Food Technol & Biotechnol, Zagreb 41000, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2013年 / 7卷 / 01期
关键词
Riemann-Liouville fractional derivative; composition identity; Opial type inequality; Laplace transform;
D O I
10.7153/jmi-07-13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to prove a multiple Opial type inequality for RL fractional derivatives which is proved for two factors and ordinary derivatives by Fink in [6]. Two methods are applied and a comparison of the obtained estimations is also given.
引用
收藏
页码:139 / 150
页数:12
相关论文
共 11 条
  • [1] Agarwal R. P., 1995, Opial inequalities with applications in differential and difference equations
  • [2] ANASTASSIOU GA, 2001, DYNAMIC SYSTEMS APPL, V10, P395
  • [3] ANASTASSIOU GA, 2002, INT J MATH MATH SCI, V31, P85, DOI DOI 10.1155/S016117120201311X
  • [4] Andric M, 2011, DYNAM SYST APPL, V20, P383
  • [5] ANDRIC M., MATH INEQUA IN PRESS
  • [6] [Anonymous], 1960, Ann. Polon. Math.
  • [7] [Anonymous], 2006, Journal of the Electrochemical Society
  • [8] ON OPIALS INEQUALITY FOR F(N)
    FINK, AM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) : 177 - 181
  • [9] On an Opial type inequality due to Fink
    Pang, PYH
    Agarwal, RP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (02) : 748 - 753
  • [10] Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications