On graphs whose energy exceeds the number of vertices

被引:43
作者
Gutman, Ivan [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
关键词
Graph spectrum; Energy (of graph);
D O I
10.1016/j.laa.2007.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph on n vertices, and let lambda(1), lambda(2), ..., lambda(n) the eigenvalues of a (0, 1)-adjacency matrix of G. The energy of G is E = Sigma(n)(i=1) vertical bar lambda(i)vertical bar. We characterize several classes of graphs for which E >= n. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2670 / 2677
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1978, Ber. Math.-Stat. Sekt. Forsch-Zent. Graz, V103, P1, DOI DOI 10.1016/J.LAA.2004.02.038
[2]  
Coulson CA, 1940, P CAMB PHILOS SOC, V36, P201
[3]  
Cvetkovic D., 1995, Spectra of Graphs-Theory and Application, V3rd ed.
[4]   WHY IS DELOCALIZATION ENERGY NEGATIVE AND WHY IS IT PROPORTIONAL TO NUMBER OF PI ELECTRONS [J].
ENGLAND, W ;
RUEDENBERG, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (26) :8769-8775
[5]  
Fischermann M, 2002, Z NATURFORSCH A, V57, P49
[6]   Topology and stability of conjugated hidrocarbons.: The dependence of total π-electron energy on molecular topology [J].
Gutman, I .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2005, 70 (03) :441-456
[7]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196
[8]  
Gutman I., 1989, INTRO THEORY BENZENO, DOI [DOI 10.1007/978-3-642-87143-6_5, 10.1007/978-3-642-87143-6, DOI 10.1007/978-3-642-87143-6]
[9]  
Gutman I., 1986, Mathematical Concepts in Organic Chemistry, DOI 10.1007/978-3-642-70982-1
[10]  
Gutman I, 2007, MATCH-COMMUN MATH CO, V57, P435