Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes

被引:57
作者
Fan, Y. H. [1 ]
Tang, G. H. [1 ]
Li, X. L. [1 ]
Yang, D. L. [1 ]
Wang, S. Q. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Heat transfer; Correlation; Supercritical carbon dioxide; Non-uniform heating; TRANSFER DETERIORATION PHENOMENON; ENTROPY GENERATION BEHAVIOR; FIRED POWER-PLANT; PRESSURE WATER; HYDRAULIC RESISTANCE; NUMERICAL-ANALYSIS; MIXED CONVECTION; CIRCULAR TUBES; SMOOTH TUBE; EMPIRICAL CORRELATIONS;
D O I
10.1016/j.energy.2018.12.151
中图分类号
O414.1 [热力学];
学科分类号
摘要
Supercritical heat transfer mechanisms and heat transfer correlations are firstly reviewed in present paper. The heat transfer characteristics of S-CO2 in circumferentially non-uniform heated vertical upward flow are then numerically studied and the fundamental mechanisms are discussed. The abnormal heat transfer for S-CO2 is believed to be caused by the comprehensive effect of thermophysical property variations. For S-CO2 with non-uniform heating and large mass flow rate, the enhanced heat transfer is mainly related to the large specific heat in the near wall region while the deteriorated heat transfer is dominated by the thickening viscous sublayer induced by the viscosity increase. Besides, the buoyancy effect induced by the density variation is still prominent to axial velocity distribution even in the forced convection. Finally a new correlation with higher accuracy is developed for S-CO2 circumferentially average heat transfer by introducing the correction parameters of viscosity, specific heat, axial flow acceleration and non-uniform heat flux. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:480 / 496
页数:17
相关论文
共 139 条
[1]   PSEUDOBOILING HEAT TRANSFER TO SUPERCRITICAL PRESSURE WATER IN SMOOTH AND RIBBED TUBES [J].
ACKERMAN, JW .
JOURNAL OF HEAT TRANSFER, 1970, 92 (03) :490-&
[2]   REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT [J].
Ahn, Yoonhan ;
Bae, Seong Jun ;
Kim, Minseok ;
Cho, Seong Kuk ;
Baik, Seungjoon ;
Lee, Jeong Ik ;
Cha, Jae Eun .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2015, 47 (06) :647-661
[3]   Direct numerical simulation of turbulent supercritical flows with heat transfer [J].
Bae, JH ;
Yoo, JY ;
Choi, H .
PHYSICS OF FLUIDS, 2005, 17 (10)
[4]   Direct numerical simulation of heated CO2 flows at supercritical pressure in a vertical annulus at Re=8900 [J].
Bae, Joong Hun ;
Yoo, Jung Yul ;
McEligot, Donald M. .
PHYSICS OF FLUIDS, 2008, 20 (05)
[5]   A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids [J].
Bae, Yoon Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 92 :792-806
[6]   Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel [J].
Bae, Yoon Y. .
NUCLEAR ENGINEERING AND DESIGN, 2011, 241 (08) :3164-3177
[7]   Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures [J].
Bae, Yoon-Yeong ;
Kim, Hwan-Yeol ;
Yoo, Tae Ho .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) :340-351
[8]   Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube [J].
Bae, Yoon-Yeong ;
Kim, Hwan-Yeol ;
Kang, Deog-Ji .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (08) :1295-1308
[9]   Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel [J].
Bae, Yoon-Yeong ;
Kim, Hwan-Yeol .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2009, 33 (02) :329-339
[10]   Effect of buoyancy on heat transfer in supercritical water flow in a horizontal round tube [J].
Bazargan, M ;
Fraser, D ;
Chatoorgan, V .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (08) :897-902