A core-shell-structured TiO2(B) nanofiber@porous RuO2 composite as a carbon-free catalytic cathode for Li-O2 batteries

被引:29
作者
Guo, Ziyang
Li, Chao
Liu, Jingyuan
Su, Xiuli
Wang, Yonggang [1 ]
Xia, Yongyao
机构
[1] Fudan Univ, iChEM Collaborat Innovat Ctr Chem Energy Mat, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
关键词
LITHIUM-AIR BATTERY; LONG-LIFE; OXIDE; GRAPHENE; BINDER; ELECTRODE; SOLVENTS; NANOARCHITECTURES; CHALLENGES; STABILITY;
D O I
10.1039/c5ta06850a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous carbon, which is the most widely used cathode material ever for Li-O-2 batteries, is found to decompose in the charging process, promote electrolyte decomposition, and react with the discharge product. Carbon-free cathodes thus become critical for Li-O-2 batteries, but generally exhibit low capacity and poor rate because of their high density and insufficient pore characteristic. Herein, we present a simple method to prepare a core-shell-structured TiO2(B) nanofiber@porous RuO2 composite, which is used as a carbon-free catalyst for Li-O-2 batteries. The RuO2 coating layer replicates the structure of TiO2 nanofibers to form a one-dimensional RuO2 shell with a typical hierarchical mesoporous/macroporous structure. Besides the reduced undesired decomposition, the abundant porous structure and inherent high conductivity of the RuO2 coating layer also increase the specific capacity, efficiency, rate ability and cycle life. With a high mass loading of 2.5 mg cm(-2) on the cathode, the Li-O-2 battery shows a performance superior to previous reports, including high capacity (800 mA h g(-1) at a current density of 0.125 mA cm(-2) or 50 mA g(-1)) with a very high energy efficiency of >82.5%, good rate (500 mA h g(-1) at a current density of 0.5 mA cm(-2) or 200 mA g(-1)) and long-life (80 cycles at a fixed capacity of 300 mA h g(-1)). It is also demonstrated that the lithiation/de-lithiation of RuO2 can contribute capacity over the charge/discharge process, indicating that this battery can be operated as a rechargeable RuO2/Li battery without O-2 in the environment.
引用
收藏
页码:21123 / 21132
页数:10
相关论文
共 57 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
[3]  
[Anonymous], NAT COMMUN
[4]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[5]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[6]   The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries [J].
Bryantsev, Vyacheslav S. ;
Uddin, Jasim ;
Giordani, Vincent ;
Walker, Wesley ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) :A160-A171
[7]   Predicting Solvent Stability in Aprotic Electrolyte Li-Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•-) [J].
Bryantsev, Vyacheslav S. ;
Giordani, Vincent ;
Walker, Wesley ;
Blanco, Mario ;
Zecevic, Strahinja ;
Sasaki, Kenji ;
Uddin, Jasim ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (44) :12399-12409
[8]   Li-O2 Battery with a Dimethylformamide Electrolyte [J].
Chen, Yuhui ;
Freunberger, Stefan A. ;
Peng, Zhangquan ;
Barde, Fanny ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (18) :7952-7957
[9]   Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Peng, Zhangquan ;
Griffin, John M. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Novak, Petr ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) :8040-8047
[10]   Chemical and Morphological Changes of Li-O2 Battery Electrodes upon Cycling [J].
Gallant, Betar M. ;
Mitchell, Robert R. ;
Kwabi, David G. ;
Zhou, Jigang ;
Zuin, Lucia ;
Thompson, Carl V. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (39) :20800-20805