Molecular Dynamics Simulation on Dielectric Constant and Thermal Conductivity of Crosslink Epoxy/functionalized graphene Nano-composites

被引:3
作者
Shen, L. [1 ]
Zou, L. [1 ]
Ding, M. [1 ]
Zhao, T. [1 ]
Zhang, L. [1 ]
Li, Q. [2 ]
机构
[1] Shandong Univ, Sch Elect Engn, 17923 Jingshi Rd, Jinan 250061, Peoples R China
[2] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R China
来源
ICNME 2019: 2019 THE 7TH INTERNATIONAL CONFERENCE ON NANOMATERIALS AND MATERIALS ENGINEERING | 2020年 / 761卷
关键词
ENERGY;
D O I
10.1088/1757-899X/761/1/012009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoscale graphene fillers are expected to enhance electronic and thermal properties of polymers owing to the superior performances of graphene. In this paper, dielectric constant and thermal conductivity of crosslink epoxy/ functionalized graphene nano-composites were investigated using molecular dynamics simulations. The results show that graphene nanoplatelets (GN) can improve performances of polymer matrix, covalent functional groups can further enhance this improvement. Among different functional groups, hydroxyl is more effective than carboxyl and amino in reducing dielectric constant. Correspondingly, the introduction of graphene fillers also leads to an increase in thermal conductivity. GN and amino functionalized GN raise thermal conductivity of crosslink epoxy by 30.69% and 44.86% respectively. All the results demonstrate that functionalization of GN can suppress polarization and enhance thermal transportation.
引用
收藏
页数:7
相关论文
共 17 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications [J].
Chang, Haixin ;
Wu, Hongkai .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3483-3507
[3]   Role of graphene waviness on the thermal conductivity of graphene composites [J].
Chu, Ke ;
Li, Wen-sheng ;
Dong, Hongfeng .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 111 (01) :221-225
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[6]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[7]   Structure of graphite oxide revisited [J].
Lerf, A ;
He, HY ;
Forster, M ;
Klinowski, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (23) :4477-4482
[8]  
MullerPlathe F, 1997, J CHEM PHYS, V106, P6082, DOI 10.1063/1.473271
[9]   DIPOLE-MOMENT FLUCTUATION FORMULAS IN COMPUTER-SIMULATIONS OF POLAR SYSTEMS [J].
NEUMANN, M .
MOLECULAR PHYSICS, 1983, 50 (04) :841-858
[10]   A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects [J].
Ng, T. Y. ;
Yeo, J. J. ;
Liu, Z. S. .
CARBON, 2012, 50 (13) :4887-4893