On representations of Clifford algebras of Ternary cubic forms

被引:14
作者
Coskun, Emre [1 ]
Kulkarni, Rajesh S. [2 ]
Mustopa, Yusuf [3 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
NEW TRENDS IN NONCOMMUTATIVE ALGEBRA | 2012年 / 562卷
基金
美国国家科学基金会;
关键词
BINARY;
D O I
10.1090/conm/562/11132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we provide an overview of a one-to-one correspondence between representations of the generalized Clifford algebra C-f of a ternary cubic form f and certain vector bundles (called Ulrich bundles) on a cubic surface X. We study general properties of Ulrich bundles, and using a recent classification of Casanellas and Hartshorne, deduce the existence of irreducible representations of C-f of every possible dimension.
引用
收藏
页码:91 / +
页数:2
相关论文
共 12 条
[1]  
BACKELIN J, 1988, LECT NOTES MATH, V1352, P1
[2]   MAXIMALLY GENERATED COHEN-MACAULAY MODULES [J].
BRENNAN, JP ;
HERZOG, J ;
ULRICH, B .
MATHEMATICA SCANDINAVICA, 1987, 61 (02) :181-203
[3]  
Casanellas M., ARXIV11020878
[4]  
Coskun E., INT MATH RE IN PRESS
[5]   Resultants and Chow forms via exterior syzygies [J].
Eisenbud, D ;
Schreyer, FO ;
Weyman, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :537-579
[6]   Rank 2 arithmetically Cohen-Macaulay bundles on a nonsingular cubic surface [J].
Faenzi, Daniele .
JOURNAL OF ALGEBRA, 2008, 319 (01) :143-186
[7]   ON AZUMAYA ALGEBRAS ARISING FROM CLIFFORD ALGEBRAS [J].
HAILE, D ;
TESSER, S .
JOURNAL OF ALGEBRA, 1988, 116 (02) :372-384
[8]  
Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi
[9]   On the Clifford algebra of a binary form [J].
Kulkarni, RS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) :3181-3208
[10]  
Miro-Roig R., 2010, N DIMENSIONAL FANO V