Cysteine reactivity across the subcellular universe

被引:99
作者
Bak, Daniel W. [1 ]
Bechtel, Tyler J. [1 ]
Falco, Julia A. [1 ]
Weerapana, Eranthie [1 ]
机构
[1] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA
关键词
MITOCHONDRIAL INTERMEMBRANE SPACE; RATIOMETRIC FLUORESCENT-PROBE; PROTEIN DISULFIDE-ISOMERASE; CHEMICAL PROTEOMICS; RELAY SYSTEM; LIVING CELLS; REDOX STATE; PH; OXIDATION; GLUTATHIONE;
D O I
10.1016/j.cbpa.2018.11.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization. Here, the diverse physicochemical properties of the mammalian subcellular organelles are explored in the context of their effects on cysteine reactivity. The unique functions of cysteine residues found in the mitochondria and endoplasmic reticulum are highlighted, together with an overview into chemoproteomic platforms employed to investigate cysteine reactivity in subcellular organelles.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 75 条
[1]   Mitochondrial pH monitored by a new engineered green fluorescent protein mutant [J].
Abad, MFC ;
Di Benedetto, G ;
Magalhaes, PJ ;
Filippin, L ;
Pozzan, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (12) :11521-11529
[2]   VISUALIZATION OF ACIDIC ORGANELLES IN INTACT-CELLS BY ELECTRON-MICROSCOPY [J].
ANDERSON, RGW ;
FALCK, JR ;
GOLDSTEIN, JL ;
BROWN, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (15) :4838-4842
[3]   Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding [J].
Arnesano, F ;
Balatri, E ;
Banci, L ;
Bertini, I ;
Winge, DR .
STRUCTURE, 2005, 13 (05) :713-722
[4]   Cysteine-mediated redox signalling in the mitochondria [J].
Bak, D. W. ;
Weerapana, E. .
MOLECULAR BIOSYSTEMS, 2015, 11 (03) :678-697
[5]   Identifying Functional Cysteine Residues in the Mitochondria [J].
Bak, Daniel W. ;
Pizzagalli, Mattia D. ;
Weerapana, Eranthie .
ACS CHEMICAL BIOLOGY, 2017, 12 (04) :947-957
[6]  
BLUMENTHAL KM, 1971, J BIOL CHEM, V246, P2430
[7]   Iron-sulfur cluster biogenesis and trafficking in mitochondria [J].
Braymer, Joseph J. ;
Lill, Roland .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (31) :12754-12763
[8]   Ionization-reactivity relationships for cysteine thiols in polypeptides [J].
Bulaj, G ;
Kortemme, T ;
Goldenberg, DP .
BIOCHEMISTRY, 1998, 37 (25) :8965-8972
[9]   Dissociation constants of cystine, cysteine, thioglycollic acid and alpha-thiolactic acid. [J].
Cannan, RK ;
Knight, BCJG .
BIOCHEMICAL JOURNAL, 1927, 21 (06) :1384-1390
[10]   Sensors and regulators of intracellular pH [J].
Casey, Joseph R. ;
Grinstein, Sergio ;
Orlowski, John .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2010, 11 (01) :50-61