CLASSIFICATION OF POSITIVE SOLUTIONS TO A LANE-EMDEN TYPE INTEGRAL SYSTEM WITH NEGATIVE EXPONENTS

被引:6
作者
Dou, Jingbo [1 ]
Ren, Fangfang [2 ,3 ]
Villavert, John [4 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Cent Univ Finance & Econ, Sch Natl Fiscal Dev, Beijing 100081, Peoples R China
[3] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[4] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
基金
中国国家自然科学基金;
关键词
Integral equations; Lane-Emden system; negative exponent; regularity; method of moving spheres; HARDY-LITTLEWOOD-SOBOLEV; LIOUVILLE TYPE; MOVING SPHERES; EQUATIONS; THEOREMS; UNIQUENESS; INEQUALITIES;
D O I
10.3934/dcds.201694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we classify the positive solutions to the following Lane-Emden type integral system with negative exponents [GRAPHICS] where n >= 1 is an integer and tau,p,q,r,s > 0. Particularly, using an integral form of the method of moving spheres, we classify the positive solutions to the integral system whenever P vertical bar Q=R vertical bar S=1 vertical bar 2n/tau. We also establish the non-existence of positive solutions under the condition max {p + q,r + s} <= 1 + 2n/tau and p+q+r+s< 2(1 + 2n/tau).
引用
收藏
页码:6767 / 6780
页数:14
相关论文
共 25 条
[1]   Representation Formulae for Solutions to Some Classes of Higher Order Systems and Related Liouville Theorems [J].
Caristi, Gabriella ;
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :27-67
[2]   AN INTEGRAL SYSTEM AND THE LANE-EMDEN CONJECTURE [J].
Chen, Wenxiong ;
Li, Congming .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) :1167-1184
[3]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[4]   Classification of solutions for a system of integral equations [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :59-65
[5]  
Chen WX, 2005, DISCRETE CONT DYN-A, V12, P347
[6]   Reversed Hardy-Littewood-Sobolev Inequality [J].
Dou, Jingbo ;
Zhu, Meijun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (19) :9696-9726
[7]   Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space [J].
Dou, Jingbo ;
Zhu, Meijun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) :651-687
[8]   Liouville type theorems for the system of integral equations [J].
Dou, Jingbo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2586-2594
[9]   Lane-Emden systems with negative exponents [J].
Ghergu, Marius .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3295-3318
[10]   Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications [J].
Han, Yazhou ;
Zhu, Meijun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :1-25