Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

被引:12
作者
de Aguiar Francisco, O. A. [1 ]
Buytaert, J. [2 ]
Collins, P. [2 ]
Dumps, R. [2 ]
John, M. [3 ]
Mapelli, A. [2 ]
Romagnoli, G. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[2] CERN, CH-1211 Geneva 23, Switzerland
[3] Univ Oxford, Particle Phys, Oxford OX1 3RH, England
关键词
Detector cooling and thermo-stabilization; Si microstrip and pad detectors;
D O I
10.1088/1748-0221/10/05/C05014
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.
引用
收藏
页数:9
相关论文
共 7 条
[1]  
Aaij R., 2014, J. Instrum., V9
[2]   The LHCb Detector at the LHC [J].
Alves, A. Augusto, Jr. ;
Andrade Filho, L. M. ;
Barbosa, A. F. ;
Bediaga, I. ;
Cernicchiaro, G. ;
Guerrer, G. ;
Lima, H. P., Jr. ;
Machado, A. A. ;
Magnin, J. ;
Marujo, F. ;
de Miranda, J. M. ;
Reis, A. ;
Santos, A. ;
Toledo, A. ;
Akiba, K. ;
Amato, S. ;
de Paula, B. ;
de Paula, L. ;
da Silva, T. ;
Gandelman, M. ;
Lopes, J. H. ;
Marechal, B. ;
Moraes, D. ;
Polycarpo, E. ;
Rodrigues, F. ;
Ballansat, J. ;
Bastian, Y. ;
Boget, D. ;
De Bonis, I. ;
Coco, V. ;
David, P. Y. ;
Decamp, D. ;
Delebecque, P. ;
Drancourt, C. ;
Dumont-Dayot, N. ;
Girard, C. ;
Lieunard, B. ;
Minard, M. N. ;
Pietrzyk, B. ;
Rambure, T. ;
Rospabe, G. ;
T'Jampens, S. ;
Ajaltouni, Z. ;
Bohner, G. ;
Bonnefoy, R. ;
Borras, D. ;
Carloganu, C. ;
Chanal, H. ;
Conte, E. ;
Cornat, R. .
JOURNAL OF INSTRUMENTATION, 2008, 3
[3]  
[Anonymous], POS VERTEX2013
[4]  
[Anonymous], CERNLHCC2013021 LHCB
[5]  
[Anonymous], CERNLHCC2012007 LHCB
[6]  
[Anonymous], ANSYS AC RES REL 14
[7]   Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector [J].
Nomerotski, A. ;
Buytart, J. ;
Collins, P. ;
Dumps, R. ;
Greening, E. ;
John, M. ;
Mapelli, A. ;
Leflat, A. ;
Li, Y. ;
Romagnoli, G. ;
Verlaat, B. .
JOURNAL OF INSTRUMENTATION, 2013, 8