On split Leibniz algebras

被引:18
|
作者
Calderon Martin, Antonio J. [1 ]
Sanchez Delgado, Jose M. [1 ]
机构
[1] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
关键词
Infinite dimensional Leibniz algebra; Split Leibniz algebra; Maximal length grading; Root; Root space; FILIFORM;
D O I
10.1016/j.laa.2011.02.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to begin an approach to the structure of arbitrary Leibniz algebras, (with no restrictions neither on the dimension nor on the base field), we introduce the class of split Leibniz algebras as the natural extension of the class of split Lie algebras. By developing techniques of connections of roots for this kind of algebras, we show that any of such algebras (L, [.,.]) is of the form L = U+Sigma I-j(j) with u a subspace of the abelian subalgebra H, (in the sense [H, H] = 0), and any I-j a well described ideal of L. satisfying [I-j, I-k] = 0 if j not equal k. In the case of L being of maximal length we characterize the simplicity of the algebra in terms of connections of roots. (C) Elsevier Inc. All rights reserved.
引用
收藏
页码:1651 / 1663
页数:13
相关论文
共 50 条
  • [1] Split 3-Leibniz algebras
    Calderon Martin, Antonio J.
    Sanchez-Ortega, Juana
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 204 - 215
  • [2] On split regular Hoin-Leibniz algebras
    Cao, Yan
    Chen, Liangyun
    Sun, Bing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (10)
  • [3] On Split Regular Hom-Leibniz-Rinehart Algebras
    Shuangjian GUO
    Xiaohui ZHANG
    Shengxiang WANG
    Journal of Mathematical Research with Applications, 2022, 42 (05) : 481 - 498
  • [4] THE STRUCTURE OF SPLIT REGULAR BIHOM-LEIBNIZ COLOR ALGEBRAS
    Khalili, Valiollah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (04) : 1369 - 1386
  • [5] SPLIT REGULAR HOM-LEIBNIZ COLOR 3-ALGEBRAS
    Kaygorodov, Ivan
    Popov, Yury
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 251 - 277
  • [7] On Leibniz algebras
    Ayupov, SA
    Omirov, BA
    ALGEBRA AND OPERATOR THEORY, 1998, : 1 - 12
  • [8] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [9] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Stitzinger, Ernie
    White, Ashley
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 627 - 633
  • [10] Conjugacy of Cartan Subalgebras in Solvable Leibniz Algebras and Real Leibniz Algebras
    Ernie Stitzinger
    Ashley White
    Algebras and Representation Theory, 2018, 21 : 627 - 633