Extremal values on the eccentric distance sum of trees

被引:56
作者
Geng, Xianya [1 ]
Li, Shuchao [2 ]
Zhang, Meng [2 ]
机构
[1] Anhui Univ Sci & Technol, Dept Math & Phys, Huainan 232001, Anhui, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentric distance sum; Domination number; Leaves; Bipartition; CONNECTIVITY INDEX; WIENER INDEX; GRAPH; PROPERTY;
D O I
10.1016/j.dam.2013.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V-G, E-G) be a simple connected graph. The eccentric distance sum of G is defined as xi(d)(G) = Sigma(v is an element of VG) epsilon(G)(v)D-G(v), where epsilon(G)(v) is the eccentricity of the vertex v and D-G(v) = Sigma(u is an element of VG) d(G)(u, v) is the sum of all distances from the vertex v. In this paper the tree among n-vertex trees with domination number gamma having the minimal eccentric distance sum is determined and the tree among n-vertex trees with domination number gamma satisfying n = k gamma having the maximal eccentric distance sum is identified, respectively, for k = 2, 3, n/3, n/2. Sharp upper and lower bounds on the eccentric distance sums among the n-vertex trees with k leaves are determined. Finally, the trees among the n-vertex trees with a given bipartition having the minimal, second minimal and third minimal eccentric distance sums are determined, respectively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2427 / 2439
页数:13
相关论文
共 25 条
  • [1] [Anonymous], DISCRETE MATH
  • [2] [Anonymous], NOVEL MOL STRUCTURE
  • [3] The eccentric connectivity index of nanotubes and nanotori
    Ashrafi, A. R.
    Saheli, M.
    Ghorbani, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4561 - 4566
  • [4] Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
  • [5] DEGREE DISTANCE OF A GRAPH - A DEGREE ANALOG OF THE WIENER INDEX
    DOBRYNIN, AA
    KOCHETOVA, AA
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05): : 1082 - 1086
  • [6] Wiener index of trees: Theory and applications
    Dobrynin, AA
    Entringer, R
    Gutman, I
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) : 211 - 249
  • [7] Predicting anti-HIV-1 activity of 6-arylbenzonitriles: Computational approach using superaugmented eccentric connectivity topochemical indices
    Dureja, Harish
    Gupta, Sunil
    Madan, A. K.
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2008, 26 (06) : 1020 - 1029
  • [8] ENTRINGER RC, 1976, CZECH MATH J, V26, P283
  • [9] Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
  • [10] Frucht R., 1970, Aequationes Math., V4, P322, DOI DOI 10.1007/BF01844162