Extremal values on the eccentric distance sum of trees

被引:58
作者
Geng, Xianya [1 ]
Li, Shuchao [2 ]
Zhang, Meng [2 ]
机构
[1] Anhui Univ Sci & Technol, Dept Math & Phys, Huainan 232001, Anhui, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Eccentric distance sum; Domination number; Leaves; Bipartition; CONNECTIVITY INDEX; WIENER INDEX; GRAPH; PROPERTY;
D O I
10.1016/j.dam.2013.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V-G, E-G) be a simple connected graph. The eccentric distance sum of G is defined as xi(d)(G) = Sigma(v is an element of VG) epsilon(G)(v)D-G(v), where epsilon(G)(v) is the eccentricity of the vertex v and D-G(v) = Sigma(u is an element of VG) d(G)(u, v) is the sum of all distances from the vertex v. In this paper the tree among n-vertex trees with domination number gamma having the minimal eccentric distance sum is determined and the tree among n-vertex trees with domination number gamma satisfying n = k gamma having the maximal eccentric distance sum is identified, respectively, for k = 2, 3, n/3, n/2. Sharp upper and lower bounds on the eccentric distance sums among the n-vertex trees with k leaves are determined. Finally, the trees among the n-vertex trees with a given bipartition having the minimal, second minimal and third minimal eccentric distance sums are determined, respectively. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2427 / 2439
页数:13
相关论文
共 25 条
[1]  
[Anonymous], DISCRETE MATH
[2]  
[Anonymous], NOVEL MOL STRUCTURE
[3]   The eccentric connectivity index of nanotubes and nanotori [J].
Ashrafi, A. R. ;
Saheli, M. ;
Ghorbani, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4561-4566
[4]  
Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
[5]   DEGREE DISTANCE OF A GRAPH - A DEGREE ANALOG OF THE WIENER INDEX [J].
DOBRYNIN, AA ;
KOCHETOVA, AA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1082-1086
[6]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[7]   Predicting anti-HIV-1 activity of 6-arylbenzonitriles: Computational approach using superaugmented eccentric connectivity topochemical indices [J].
Dureja, Harish ;
Gupta, Sunil ;
Madan, A. K. .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2008, 26 (06) :1020-1029
[8]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[9]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[10]  
Frucht R., 1970, Aequationes Math., V4, P322, DOI DOI 10.1007/BF01844162