A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3 | 2012年 / 557-559卷
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
[41]   BOUNDARY ELEMENT APPROXIMATION OF STEKLOV EIGENVALUE PROBLEM FOR HELMHOLTZ EQUATION [J].
Weijun Tang Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Beijing ChinaZhi Guan ;
Houde Han Department of Applied Mathematics Tsinghua University Beijing China .
Journal of Computational Mathematics, 1998, (02) :165-178
[42]   Local and parallel finite element algorithms for the Steklov eigenvalue problem [J].
Bi, Hai ;
Li, Zhengxia ;
Yang, Yidu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) :399-417
[43]   MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS [J].
Cao, Li-Qun ;
Zhang, Lei ;
Allegretto, Walter ;
Lin, Yanping .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) :42-73
[44]   Boundary element approximation of Steklov eigenvalue problem for Helmholtz equation [J].
Tang, WJ ;
Guan, Z ;
Han, HD .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 1998, 16 (02) :165-178
[45]   Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian [J].
Zerouali, A. ;
Karim, B. ;
Chakrone, O. ;
Boukhsas, A. .
AFRIKA MATEMATIKA, 2019, 30 (1-2) :171-179
[46]   Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian [J].
A. Zerouali ;
B. Karim ;
O. Chakrone ;
A. Boukhsas .
Afrika Matematika, 2019, 30 :171-179
[47]   The efficient discretization schemes for the Maxwell eigenvalue problem [J].
Wang, Wenjun ;
Zhang, Yu ;
Yang, Yidu .
SECOND SREE CONFERENCE ON ENGINEERING MODELLING AND SIMULATION (CEMS 2012), 2012, 37 :161-168
[48]   A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges [J].
Felipe Lepe ;
David Mora ;
Gonzalo Rivera ;
Iván Velásquez .
Journal of Scientific Computing, 2021, 88
[49]   A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem [J].
Zuo, Liyun ;
Du, Guangzhi .
NUMERICAL ALGORITHMS, 2018, 77 (01) :151-165
[50]   An Overdetermined Steklov Eigenvalue Problem on Riemannian Manifolds with Nonnegative Ricci Curvature [J].
Lee, Eunjoo ;
Seo, Keomkyo .
RESULTS IN MATHEMATICS, 2025, 80 (04)