A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3 | 2012年 / 557-559卷
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [21] A DRBEM approximation of the Steklov eigenvalue problem
    Turk, Onder
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 : 232 - 241
  • [22] A Parallel Partition of Unity Scheme Based on Two-Grid Discretizations for the Navier-Stokes Problem
    Du, Guangzhi
    Zuo, Liyun
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1445 - 1462
  • [23] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Zhao, Yan
    Wu, Chuanxi
    Mao, Jing
    Du, Feng
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02): : 389 - 414
  • [24] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414
  • [25] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) : 1421 - 1445
  • [26] A two-grid parallel partition of unity finite element scheme
    Du, Guangzhi
    Zuo, Liyun
    NUMERICAL ALGORITHMS, 2019, 80 (02) : 429 - 445
  • [27] A two-grid parallel partition of unity finite element scheme
    Guangzhi Du
    Liyun Zuo
    Numerical Algorithms, 2019, 80 : 429 - 445
  • [28] The effect of reduced integration in the Steklov eigenvalue problem
    Armentano, MG
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01): : 27 - 36
  • [29] A type of multilevel method for the Steklov eigenvalue problem
    Xie, Hehu
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) : 592 - 608
  • [30] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601