A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3 | 2012年 / 557-559卷
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
[21]   Local and parallel two-grid discretization algorithms for natural convection flows [J].
Guo, Xiaoyun ;
Shang, Yueqiang .
NUMERICAL ALGORITHMS, 2025,
[22]   A DRBEM approximation of the Steklov eigenvalue problem [J].
Turk, Onder .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 :232-241
[23]   A Parallel Partition of Unity Scheme Based on Two-Grid Discretizations for the Navier-Stokes Problem [J].
Du, Guangzhi ;
Zuo, Liyun .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) :1445-1462
[24]   Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates [J].
Yan Zhao ;
Chuanxi Wu ;
Jing Mao ;
Feng Du .
Revista Matemática Complutense, 2020, 33 :389-414
[25]   Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates [J].
Zhao, Yan ;
Wu, Chuanxi ;
Mao, Jing ;
Du, Feng .
REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (02) :389-414
[26]   A two-grid parallel partition of unity finite element scheme [J].
Du, Guangzhi ;
Zuo, Liyun .
NUMERICAL ALGORITHMS, 2019, 80 (02) :429-445
[27]   A two-grid parallel partition of unity finite element scheme [J].
Guangzhi Du ;
Liyun Zuo .
Numerical Algorithms, 2019, 80 :429-445
[28]   A virtual element method for the Steklov eigenvalue problem [J].
Mora, David ;
Rivera, Gonzalo ;
Rodriguez, Rodolfo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1421-1445
[29]   A full multigrid method for the Steklov eigenvalue problem [J].
Xu, Fei .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (12) :2371-2386
[30]   The effect of reduced integration in the Steklov eigenvalue problem [J].
Armentano, MG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01) :27-36