A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
|
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3 | 2012年 / 557-559卷
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 50 条
  • [1] A two-grid discretization scheme for the Steklov eigenvalue problem
    Li Q.
    Yang Y.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 129 - 139
  • [2] An improved two-grid finite element method for the Steklov eigenvalue problem
    Weng, Zhifeng
    Zhai, Shuying
    Feng, Xinlong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) : 2962 - 2972
  • [3] Two-grid discretization schemes based on the filter approach for the Maxwell eigenvalue problem
    Zhang, Yu
    Wang, Wenjun
    Yang, Yidu
    SECOND SREE CONFERENCE ON ENGINEERING MODELLING AND SIMULATION (CEMS 2012), 2012, 37 : 143 - 149
  • [4] A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem
    Bi, Hai
    Yang, Yidu
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9669 - 9678
  • [5] TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS
    Yang, Yidu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (06) : 748 - 763
  • [6] A two-grid discretization scheme for optimal control problems of elliptic equations
    Liu, Huipo
    Wang, Shuanghu
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 699 - 716
  • [7] A two-grid discretization scheme for optimal control problems of elliptic equations
    Huipo Liu
    Shuanghu Wang
    Numerical Algorithms, 2017, 74 : 699 - 716
  • [8] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [9] A NEW PARALLEL FINITE ELEMENT ALGORITHM BASED ON TWO-GRID DISCRETIZATION FOR THE GENERALIZED STOKES PROBLEM
    Shang, Yueqiang
    He, Yinnian
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 676 - 688
  • [10] H2-Conforming Methods and Two-Grid Discretizations for the Elastic Transmission Eigenvalue Problem
    Yang, Yidu
    Han, Jiayu
    Bi, Hai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (04) : 1366 - 1388