A two-grid discretization scheme for a sort of Steklov eigenvalue problem

被引:0
作者
Xia, Chao [1 ]
Yang, Yidu [1 ]
Bi, Hai [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ADVANCED MATERIALS AND PROCESSES II, PTS 1-3 | 2012年 / 557-559卷
关键词
Steklov eigenvalue problem; Coupled fluid-solid vibrations; Finite element; Two-grid discretization scheme;
D O I
10.4028/www.scientific.net/AMR.557-559.2087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
On the basis of Yang and Bi's work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis.
引用
收藏
页码:2087 / 2091
页数:5
相关论文
共 8 条
[1]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[2]  
Bergamann S., 1953, KERNEL FUNCTIONS ELL
[3]  
Bermúdez A, 2000, NUMER MATH, V87, P201, DOI 10.1007/S002110000175
[4]   A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem [J].
Bi, Hai ;
Yang, Yidu .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) :9669-9678
[5]  
Conca C., 1995, FLUID PERIODIC STRUC
[6]   A two-grid discretization scheme for the Steklov eigenvalue problem [J].
Li Q. ;
Yang Y. .
Journal of Applied Mathematics and Computing, 2011, 36 (1-2) :129-139
[7]  
Xu JC, 2001, MATH COMPUT, V70, P17
[8]   TWO-GRID FINITE ELEMENT DISCRETIZATION SCHEMES BASED ON SHIFTED-INVERSE POWER METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS [J].
Yang, Yidu ;
Bi, Hai .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1602-1624