Vibrational Magnetic Field Distortion Compensation System in MRI Superconducting Magnets

被引:75
作者
Zhang, Zhenyu [1 ]
Shen, Weijun [1 ]
Havens, Timothy [1 ]
机构
[1] GE Healthcare, MR Sci & Technol, Florence, SC 29501 USA
关键词
Eddy currents; image quality; magnetic resonance imaging; superconducting magnets; vibration;
D O I
10.1109/TASC.2013.2280251
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Superconducting magnets in MRIs are subject to various sources of vibrations. As the magnets respond to these excitations, eddy currents are generated in metallic structures in the cryostat and create their own magnetic fields inside the region of interest (ROI) where the imaging process takes place. Because these vibration-induced magnetic field distortions are not synchronized with pulse sequences, they are especially detrimental to image quality. In this paper, a novel passive compensation method for vibrational magnetic field distortions is presented. It provides a cost-effective solution that is capable of compensating dynamic field distortions over broad-band frequency ranges and complex vibrational behaviors.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] First Results of the Magnetic Measurements of the Superconducting Magnets for the European XFEL
    Brueck, H.
    Duda, M.
    Bandelmann, R.
    Calero, J.
    Gornicki, E.
    Kotarba, A.
    Martinez, T.
    Toral, F.
    Stolper, M.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (03)
  • [22] Loss contributions in superconducting magnets caused by transient magnetic fields
    Takacs, S.
    Werner, A.
    Sochor, M.
    FUSION ENGINEERING AND DESIGN, 2006, 81 (20-22) : 2509 - 2513
  • [23] Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets
    Garcia I.C.
    Schöps S.
    Maciejewski M.
    Bortot L.
    Prioli M.
    Auchmann B.
    Verweij A.
    Garcia, Idoia Cortes (cortes@gsc.tu-darmstadt.de), 2017, Institute of Electrical and Electronics Engineers Inc., United States (02) : 97 - 104
  • [24] A Quench Detection and Monitoring System for Superconducting Magnets at Fermilab
    Galt, A.
    Al Atassi, O.
    Chlachidze, G.
    Cummings, T.
    Feher, S.
    Hocker, A.
    Kotelnikov, S.
    Lamm, M.
    Makulski, A.
    Nogiec, J.
    Orris, D.
    Pilipenko, R.
    Tartaglia, M.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (06)
  • [25] Structural Diagnostics of Superconducting Magnets Using Diffuse Field Ultrasound
    Marchevsky, M.
    Arbelaez, D.
    Prestemon, S.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2020, 30 (04)
  • [26] An Active Quench Protection System for MRI Magnets
    Huang, Xianrui
    Wu, Anbo
    Xu, Minfeng
    Chu, Xu
    Yang, Chao
    Zhao, Yan
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) : 2091 - 2094
  • [27] Superconducting Magnet System Concept With Mechanical Energy Transfer in the Magnetic Field
    Kashikhin, Vladimir
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
  • [28] A Transmit/Receive System for Magnetic Field Monitoring of In Vivo MRI
    Barmet, Christoph
    De Zanche, Nicola
    Wilm, Bertram J.
    Pruessmann, Klaas P.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (01) : 269 - 276
  • [29] Experimental Study of a Room-Temperature Shimming Technology Employing Genetic Algorithm for NMR/MRI Superconducting Magnets
    Jang, Jae Young
    Hwang, Young Jin
    Kim, Jaemin
    Song, Seunghyun
    Kim, Geonyoung
    Choi, Kibum
    Hahn, Seungyong
    Ahn, Minchul
    Lee, SangGap
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
  • [30] CHALLENGES OF HIGH FIELD LARGE BORE SUPERCONDUCTING "OUTSERTS" FOR RESEARCH MAGNETS
    Neil, Clarke
    Steven, Ball
    Joe, Brown
    Ziad, Melhem
    Andrew, Twin
    Roman, Viznichenko
    David, Warren
    Richard, Wotherspoon
    14TH CRYOGENICS 2017 IIR INTERNATIONAL CONFERENCE (CRYOGENICS 2017), 2017, : 114 - 119