Planar Pose Estimation Using Object Detection and Reinforcement Learning

被引:0
作者
Rasmussen, Frederik Norby [1 ]
Andersen, Sebastian Terp [1 ]
Grossmann, Bjarne [1 ]
Boukas, Evangelos [2 ]
Nalpantidis, Lazaros [2 ]
机构
[1] Aalborg Univ, Dept Mat & Prod, Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Elect Engn, Lyngby, Denmark
来源
COMPUTER VISION SYSTEMS (ICVS 2019) | 2019年 / 11754卷
关键词
Pose estimation; Object detection; Reinforcement learning;
D O I
10.1007/978-3-030-34995-0_32
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation concerns systems or models dealing with the determination of a static object's pose using, in this case, vision. This paper approaching the problem with an active vision-based solution, that integrates both perception and action in the same model. The problem is solved using a combination of neural networks for object detection and a reinforcement learning architecture for moving a camera and estimating the pose. A robotic implementation of the proposed active vision system is used for testing with promising results. Experiments show that our approach does not only solve the simple task of planar visual pose estimation, but also exhibits robustness to changes in the environment.
引用
收藏
页码:353 / 365
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 2017, COMPUTER VISION PATT
[2]   Modeling Regions of Interest on Orbital and Rover Imagery for Planetary Exploration Missions [J].
Boukas, Evangelos ;
Gasteratos, Antonios .
CYBERNETICS AND SYSTEMS, 2016, 47 (03) :180-205
[3]  
Brockman G., 2016, OPENAI GYM
[4]   INTELLIGENCE WITHOUT REPRESENTATION [J].
BROOKS, RA .
ARTIFICIAL INTELLIGENCE, 1991, 47 (1-3) :139-159
[5]  
Kostavelis I., 2012, Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques (IST), P528, DOI 10.1109/IST.2012.6295575
[6]  
KRULL A, 2015, IEEE I CONF COMP VIS, P954, DOI DOI 10.1109/ICCV.2015.115
[7]   PoseAgent: Budget-Constrained 6D Object Pose Estimation via Reinforcement Learning [J].
Krull, Alexander ;
Brachmann, Eric ;
Nowozin, Sebastian ;
Michel, Frank ;
Shotton, Jamie ;
Rother, Carsten .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2566-2574
[8]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[9]   Learning visual representations for perception-action systems [J].
Piater, Justus ;
Jodogne, Sebastien ;
Detry, Renaud ;
Kraft, Dirk ;
Kruger, Norbert ;
Kroemer, Oliver ;
Peters, Jan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (03) :294-307
[10]  
Plappert M., 2016, keras-rl