Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning

被引:19
|
作者
Singh, Pravendra [1 ]
Verma, Vinay Kumar [1 ]
Rai, Piyush [1 ]
Namboodiri, Vinay P. [1 ]
机构
[1] IIT Kanpur, Dept Comp Sci & Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Adaptation models; Computational modeling; Convolutional neural networks; Training; Neurons; Redundancy; Convolution; Deep convolutional neural network acceleration; pruning; model compression; efficient computation;
D O I
10.1109/JSTSP.2020.2992390
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While convolutional neural networks (CNNs) have achieved remarkable performance on various supervised and unsupervised learning tasks, they typically consist of a massive number of parameters. This results in significant memory requirements as well as a computational burden. Consequently, there is a growing need for filter-level pruning approaches for compressing CNN based models that not only reduce the total number of parameters but reduce the overall computation as well. We present a new min-max framework for the filter-level pruning of CNNs. Our framework jointly prunes and fine-tunes CNN model parameters, with an adaptive pruning rate, while maintaining the model's predictive performance. Our framework consists of two modules: (1) An adaptive filter pruning (AFP) module, which minimizes the number of filters in the model; and (2) A pruning rate controller (PRC) module, which maximizes the accuracy during pruning. In addition, we also introduce orthogonality regularization in training of CNNs to reduce redundancy across filters of a particular layer. In the proposed approach, we prune the least important filters and, at the same time, reduce the redundancy level in the model by using orthogonality constraints during training. Moreover, unlike most previous approaches, our approach allows directly specifying the desired error tolerance instead of the pruning level. We perform extensive experiments for object classification (LeNet, VGG, MobileNet, and ResNet) and object detection (SSD, and Faster-RCNN) over benchmarked datasets such as MNIST, CIFAR, GTSDB, ImageNet, and MS-COCO. We also present several ablation studies to validate the proposed approach. Our compressed models can be deployed at run-time, without requiring any special libraries or hardware. Our approach reduces the number of parameters of VGG-16 by an impressive factor of 17.5X, and the number of FLOPS by 6.43X, with no loss of accuracy, significantly outperforming other state-of-the-art filter pruning methods.
引用
收藏
页码:838 / 847
页数:10
相关论文
共 50 条
  • [1] Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Ding, Yuhang
    Liu, Ping
    Zhu, Linchao
    Zhang, Hanwang
    Yang, Yi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2006 - 2015
  • [2] Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Liu, Ping
    Wang, Ziwei
    Hu, Zhilan
    Yang, Yi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4335 - 4344
  • [3] Filter pruning via annealing decaying for deep convolutional neural networks acceleration
    Huang, Jiawen
    Xiong, Liyan
    Huang, Xiaohui
    Chen, Qingsen
    Huang, Peng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [4] HFP: Hardware-Aware Filter Pruning for Deep Convolutional Neural Networks Acceleration
    Yu, Fang
    Han, Chuanqi
    Wang, Pengcheng
    Huang, Ruoran
    Huang, Xi
    Cui, Li
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 255 - 262
  • [5] Fpar: filter pruning via attention and rank enhancement for deep convolutional neural networks acceleration
    Chen, Yanming
    Wu, Gang
    Shuai, Mingrui
    Lou, Shubin
    Zhang, Yiwen
    An, Zhulin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2973 - 2985
  • [6] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [7] Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
    He, Yang
    Kang, Guoliang
    Dong, Xuanyi
    Fu, Yanwei
    Yang, Yi
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2234 - 2240
  • [8] FPC: Filter pruning via the contribution of output feature map for deep convolutional neural networks acceleration
    Chen, Yanming
    Wen, Xiang
    Zhang, Yiwen
    He, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [9] Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks
    Mitsuno, Kakeru
    Kurita, Takio
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1089 - 1095
  • [10] FRACTIONAL STEP DISCRIMINANT PRUNING: A FILTER PRUNING FRAMEWORK FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
    Gkalelis, Nikolaos
    Mezaris, Vasileios
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,