Exact Solutions and Conservation Laws of a Two-Dimensional Integrable Generalization of the Kaup-Kupershmidt Equation

被引:7
作者
Adem, Abdullahi Rashid [1 ]
Khalique, Chaudry Masood [1 ]
机构
[1] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, ZA-2735 Mmabatho, South Africa
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; SOLITARY WAVE SOLUTIONS; CONSTRUCTION; SYMMETRIES; EVOLUTION;
D O I
10.1155/2013/647313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-dimensional integrable generalization of the Kaup-Kupershmidt equation, which arises in various problems in mathematical physics. Exact solutions are obtained using the Lie symmetry method in conjunction with the extended tanh method and the extended Jacobi elliptic function method. In addition to exact solutions we also present conservation laws which are derived using the multiplier approach.
引用
收藏
页数:6
相关论文
共 24 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[3]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[5]  
Bluman G W., 1989, APPL MATH SCI, V81, pXIII
[6]   Double reduction of a nonlinear (2+1) wave equation via conservation laws [J].
Bokhari, Ashfaque H. ;
Al-Dweik, Ahmad Y. ;
Kara, A. H. ;
Mahomed, F. M. ;
Zaman, F. D. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1244-1253
[7]   Symmetries and exact solutions via conservation laws for some partial differential equations of Mathematical Physics [J].
Caraffini, G. L. ;
Galvani, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1474-1484
[8]  
Dubrovsky VG, 2011, THEOR MATH PHYS+, V167, P725, DOI 10.1007/s11232-011-0057-3
[9]   The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via partial derivative-dressing method [J].
Dubrovsky, VG ;
Lisitsyn, YV .
PHYSICS LETTERS A, 2002, 295 (04) :198-207
[10]  
Godlewski E., 1996, Numerical Approximation of Hyperbolic Systems of Conservation Laws, V118