Global Solutions to Gross-Neveu Equation

被引:19
作者
Huh, Hyungjin [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
Gross-Neveu; L-infinity bound; charge conservation; NONLINEAR DIRAC-EQUATION; ONE SPACE DIMENSION; FIELD-THEORIES; CAUCHY-PROBLEM; EXISTENCE;
D O I
10.1007/s11005-013-0622-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove global existence of solutions to Gross-Neveu equations. Given a local solution, we obtain a uniform L (a) bound of the solution by applying local form of charge conservation.
引用
收藏
页码:927 / 931
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1995, Progr. Nonlinear Differential Equations Appl.
[2]   Cauchy problem for one-dimensional semilinear hyperbolic systems: Global existence, blow up [J].
AregbaDriollet, D ;
Hanouzet, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (01) :1-26
[3]   On Spectral Stability of Solitary Waves of Nonlinear Dirac Equation in 1D [J].
Berkolaiko, G. ;
Comech, A. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2012, 7 (02) :13-31
[4]  
Candy T, 2011, ADV DIFFERENTIAL EQU, V16, P643
[5]  
Comech A., ARXIV12113336
[6]  
Comech A., ARXIV12091146
[8]   Nonlinear propagation of light in one-dimensional periodic structures [J].
Goodman, RH ;
Weinstein, MI ;
Holmes, PJ .
JOURNAL OF NONLINEAR SCIENCE, 2001, 11 (02) :123-168
[9]   DYNAMICAL SYMMETRY BREAKING IN ASYMPTOTICALLY FREE FIELD-THEORIES [J].
GROSS, DJ ;
NEVEU, A .
PHYSICAL REVIEW D, 1974, 10 (10) :3235-3253
[10]   Global strong solution to the Thirring model in critical space [J].
Huh, Hyungjin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :513-520