IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

被引:81
作者
Ni, Yicun [1 ]
Skinner, J. L.
机构
[1] Univ Wisconsin, Inst Theoret Chem, Madison, WI 53706 USA
关键词
ULTRAFAST INFRARED-SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATION; H-O-H; RAMAN-SPECTRA; TEMPERATURE-DEPENDENCE; DILUTE HOD; ENERGY-TRANSFER; FREQUENCY; RELAXATION; MODE;
D O I
10.1063/1.4923462
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm(-1) and a positive band centered at 1670 cm(-1). We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 109 条
[1]   A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water [J].
Ahlborn, H ;
Ji, XD ;
Space, B ;
Moore, PB .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (23) :10622-10632
[2]   Water dynamics: Vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations [J].
Asbury, JB ;
Steinel, T ;
Stromberg, C ;
Corcelli, SA ;
Lawrence, CP ;
Skinner, JL ;
Fayer, MD .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (07) :1107-1119
[3]   Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O [J].
Ashihara, S. ;
Huse, N. ;
Espagne, A. ;
Nibbering, E. T. J. ;
Elsaesser, T. .
CHEMICAL PHYSICS LETTERS, 2006, 424 (1-3) :66-70
[4]   Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H2O [J].
Ashihara, Satoshi ;
Fujioka, Sachi ;
Shibuya, Kazunori .
CHEMICAL PHYSICS LETTERS, 2011, 502 (1-3) :57-62
[5]   Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O [J].
Auer, B. ;
Kumar, R. ;
Schmidt, J. R. ;
Skinner, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (36) :14215-14220
[6]   IR and Raman spectra of liquid water: Theory and interpretation [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (22)
[7]   Vibrational Sum-Frequency Spectroscopy of the Water Liquid/Vapor Interface [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (13) :4125-4130
[8]   Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in D2O [J].
Auer, B. M. ;
Skinner, J. L. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (21)
[9]   Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water [J].
Bakker, H. J. ;
Skinner, J. L. .
CHEMICAL REVIEWS, 2010, 110 (03) :1498-1517
[10]   Molecular dynamics with quantum transitions study of the vibrational relaxation of the HOD bend fundamental in liquid D2O [J].
Bastida, Adolfo ;
Zuniga, Jose ;
Requena, Alberto ;
Miguel, Beatriz .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (23)