Lipschitz algebras and peripherally-multiplicative maps

被引:12
作者
Jimenez-Vargas, A. [1 ]
Villegas-Vallecillos, Moises [1 ]
机构
[1] Univ Almeria, Dept Algebra & Anal Matemat, Almeria 04071, Spain
关键词
Lipschitz algebra; peripherally-multiplicative map; spectrum-preserving map; peaking function; peripheral spectrum;
D O I
10.1007/s10114-008-7202-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a compact metric space and let Lip(X) be the Banach algebra of all scalar-valued Lipschitz functions on X, endowed with a natural norm. For each f is an element of Lip(X), sigma(pi)(f) denotes the peripheral spectrum of f. We state that any map Phi from Lip(X) onto Lip(Y) which preserves multiplicatively the peripheral spectrum: sigma(pi) (Phi(f)Phi(g)) = sigma(pi)(fg), for all f, g is an element of Lip (X), is a weighted composition operator of the form Phi(f) = tau center dot (f circle phi) for all f is an element of Lip(X), where tau : Y -> {-1, 1} is a Lipschitz function and phi : Y -> X is a Lipschitz homeomorphism. As a consequence of this result, any multiplicatively spectrum-preserving surjective map between Lip(X)-algebras is of the form above.
引用
收藏
页码:1233 / 1242
页数:10
相关论文
共 15 条
[1]  
Browder A., 1969, INTRO FUNCTION ALGEB
[2]   A CHARACTERIZATION OF MAXIMAL IDEALS [J].
GLEASON, AM .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :171-&
[3]   Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties [J].
Hatori, O ;
Miura, T ;
Takagi, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2923-2930
[4]  
HATORI O, TOKYO J MAT IN PRESS
[5]   Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative [J].
Hatori, Osamu ;
Miura, Takeshi ;
Takagi, Hiroyuki .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :281-296
[6]   SPECTRUM-PRESERVING LINEAR-MAPS [J].
JAFARIAN, AA ;
SOUROUR, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (02) :255-261
[7]  
Jing W, 1998, ACTA MATH SIN, V14, P719
[8]  
JING W, 1999, ACTA MATH SINICA CHI, V42, P89
[9]   A CHARACTERIZATION OF MAXIMAL IDEALS IN COMMUTATIVE BANACH ALGEBRAS [J].
KAHANE, JP ;
ZELAZKO, W .
STUDIA MATHEMATICA, 1968, 29 (03) :339-&
[10]  
Lambert S, 2007, CONTEMP MATH, V435, P265