Topological recursion with hard edges

被引:16
作者
Chekhov, Leonid [1 ,2 ,3 ]
Norbury, Paul [1 ,2 ,3 ]
机构
[1] Steklov Math Inst & Lab, Moscow, Russia
[2] Michigan State Univ, E Lansing, MI 48824 USA
[3] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
Givental decomposition; topological recursion; spectral curve; KdV tau function; COHOMOLOGICAL FIELD-THEORIES; GROMOV-WITTEN INVARIANTS; INTERSECTION THEORY; MODULI SPACES; CURVES; MODELS;
D O I
10.1142/S0129167X19500149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Givental type decomposition for partition functions that arise out of topological recursion applied to spectral curves. Copies of the Konstevich-Witten KdV tau function arise out of regular spectral curves and copies of the Brezin-Gross-Witten KdV tau function arise out of irregular spectral curves. We present the example of this decomposition for the matrix model with two hard edges and spectral curve (x(2)- 4)y(2) = 1.
引用
收藏
页数:29
相关论文
共 32 条
[1]   BGWM as second constituent of complex matrix model [J].
Alexandrov, A. ;
Mironov, A. ;
Morozov, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (12)
[2]  
Andersen J.E., ARXIV170303307
[3]   Models of discretized moduli spaces, cohomological field theories, and Gaussian means [J].
Andersen, Jorgen Ellegaard ;
Chekhov, Leonid O. ;
Norbury, Paul ;
Penner, Robert C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 :312-339
[4]   Asymptotic Expansion of β Matrix Models in the One-cut Regime [J].
Borot, G. ;
Guionnet, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (02) :447-483
[5]   Matrix model tools and geometry of moduli spaces [J].
Chekhov, L .
ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (01) :33-90
[6]  
Chekhov L., 2005, Proc. Steklov Inst. Math., V251, P254
[7]  
CHEKHOV L, 2006, J HIGH ENERGY PHYS, P9954
[8]   Free energy topological expansion for the 2-matrix model [J].
Chekhov, Leonid ;
Eynard, Bertrand ;
Orantin, Nicolas .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12)
[9]   Topological recursion on the Bessel curve [J].
Do, Norman ;
Norbury, Paul .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (01) :53-73
[10]   Identification of the Givental Formula with the Spectral Curve Topological Recursion Procedure [J].
Dunin-Barkowski, P. ;
Orantin, N. ;
Shadrin, S. ;
Spitz, L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 328 (02) :669-700