Rigorous derivation of the hydrodynamical equations for rotating superfluids

被引:5
作者
Liu, Hailiang [1 ]
Sparber, Christof [2 ,3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Wolfgang Pauli Inst, A-1090 Vienna, Austria
[3] Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
基金
美国国家科学基金会;
关键词
semiclassical asympotics; nonlinear Schrodinger equation; Bose-Einstein condensates; rotational superfluids; Thomas-Fermi limit;
D O I
10.1142/S0218202508002826
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a modified WKB approach, we present a rigorous semiclassical analysis for solutions of nonlinear Schrodinger equations with rotational forcing. This yields a rigorous justification for the hydrodynamical system of rotating superfluids. In particular, it is shown that global-in-time semiclassical convergence holds whenever the limiting hydrodynamical system has global smooth solutions and we also discuss the semiclassical dynamics of several physical quantities describing rotating superfluids.
引用
收藏
页码:689 / 706
页数:18
相关论文
共 24 条
[1]   Properties of vortices in Bose-Einstein condensates [J].
Aftalion, A .
COMPTES RENDUS PHYSIQUE, 2004, 5 (01) :9-20
[2]   Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime [J].
Aftalion, A ;
Du, Q .
PHYSICAL REVIEW A, 2001, 64 (06) :1-11
[3]  
BAO W, 2007, DYNAMICS VORTICES WE
[4]  
Bao W, 2007, BULL INST MATH ACAD, V2, P495
[5]   An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates [J].
Bao, Weizhu ;
Wang, Hanquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (02) :612-626
[6]   Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation [J].
Bao, WZ ;
Du, Q ;
Zhang, YZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :758-786
[7]  
Bao WZ, 2005, COMMUN MATH SCI, V3, P57
[8]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[9]  
CARLES R, ARXIVMATH0612518V1
[10]  
CARLES R, ARXIV07042488