Transcendence of formal power series with rational coefficients

被引:20
作者
Allouche, JP [1 ]
机构
[1] Univ Paris Sud, CNRS, LRI, F-91405 Orsay, France
关键词
transcendental formal power series; binomial series; automatic sequences; p-Lucas sequences; Chomsky-Schutzenberger theorem;
D O I
10.1016/S0304-3975(98)00256-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give algebraic proofs of transcendence over Q(X) of formal power series with rational coefficients, by using inter alia reduction module prime numbers, and the Christol theorem. Applications to generating series of languages and combinatorial objects are given. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 160
页数:18
相关论文
共 61 条
[1]  
Allouche J.-P., 1994, B BELG MATH SOC-SIM, V1, P145
[2]   FIXED-POINTS OF MORPHISMS OF A FREE MONOID [J].
ALLOUCHE, JP ;
BETREMA, J ;
SHALLIT, JO .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1989, 23 (03) :235-249
[3]   CANONICAL POSITIONS FOR THE FACTORS IN PAPERFOLDING SEQUENCES [J].
ALLOUCHE, JP ;
BOUSQUETMELOU, M .
THEORETICAL COMPUTER SCIENCE, 1994, 129 (02) :263-278
[4]  
Allouche JP, 1997, NEW TR PROB STAT, V4, P461
[5]   THE RING OF K-REGULAR SEQUENCES [J].
ALLOUCHE, JP ;
SHALLIT, J .
THEORETICAL COMPUTER SCIENCE, 1992, 98 (02) :163-197
[6]  
ALLOUCHE JP, 1990, SEM THEORIE NOMBRES, V2, P103
[7]  
ALLOUCHE JP, 1998, IN PRESS ORSAY J ALG
[8]   HILBERT SERIES OF FIXED FREE ALGEBRAS AND NONCOMMUTATIVE CLASSICAL INVARIANT-THEORY [J].
ALMKVIST, G ;
DICKS, W ;
FORMANEK, E .
JOURNAL OF ALGEBRA, 1985, 93 (01) :189-214
[9]   GROWTH FUNCTIONS FOR RESIDUALLY TORSION-FREE NILPOTENT GROUPS [J].
ALPERIN, RC ;
PETERSON, BL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (03) :585-587
[10]  
[Anonymous], B SOC MATH FRANCE