Graphene Transistor as a Probe for Streaming Potential

被引:55
作者
Newaz, A. K. M. [1 ]
Markov, D. A. [2 ,3 ]
Prasai, D. [4 ]
Bolotin, K. I. [1 ]
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Med Ctr, Dept Canc Biol, Nashville, TN 37232 USA
[3] Vanderbilt Univ, VIIBRE, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
Graphene; streaming potential; electric double layer; flow sensor; ionic strength sensor; microfluidics; FIELD-EFFECT TRANSISTORS; POLYMERS; CHARGE; FILMS; FLOW;
D O I
10.1021/nl300603v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We explore the dependence of electrical transport in a graphene field effect transistor (GraFET) on the flow of water/sodium chloride electrolyte within the immediate vicinity of that transistor. We find large and reproducible shifts in the charge neutrality point of GraFETs that are dependent on the liquid velocity and the ion concentration. We show that these shifts are consistent with the variation of the local electrochemical potential of the liquid next to graphene that are caused by the fluid flow (streaming potential). Furthermore, we utilize the sensitivity of electrical transport in GraFETs to the parameters of the fluid flow to demonstrate graphene-based mass flow and ionic concentration sensing. We successfully detect a flow as small as similar to 70 nL/min and detect a change in the ionic concentration as small as similar to 40 nM.
引用
收藏
页码:2931 / 2935
页数:5
相关论文
共 40 条
[1]   Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel [J].
Ang, Priscilla Kailian ;
Li, Ang ;
Jaiswal, Manu ;
Wang, Yu ;
Hou, Han Wei ;
Thong, John T. L. ;
Lim, Chwee Teck ;
Loh, Kian Ping .
NANO LETTERS, 2011, 11 (12) :5240-5246
[2]  
[Anonymous], 1999, CRC handbook of chemistry and physics
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   A nanoscale probe for fluidic and ionic transport [J].
Bourlon, Bertrand ;
Wong, Joyce ;
Miko, Csilla ;
Forro, Laszlo ;
Bockrath, Marc .
NATURE NANOTECHNOLOGY, 2007, 2 (02) :104-107
[5]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[6]   Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution [J].
Chen, Fang ;
Qing, Quan ;
Xia, Jilin ;
Li, Jinghong ;
Tao, Nongjian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) :9908-+
[7]   Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors [J].
Cheng, Yi ;
Xiong, P. ;
Yun, C. Steven ;
Strouse, G. F. ;
Zheng, J. P. ;
Yang, R. S. ;
Wang, Z. L. .
NANO LETTERS, 2008, 8 (12) :4179-4184
[8]   Carbon nanotubes provide a charge [J].
Cohen, AE .
SCIENCE, 2003, 300 (5623) :1235-1235
[9]   Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording [J].
Cohen-Karni, Tzahi ;
Qing, Quan ;
Li, Qiang ;
Fang, Ying ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (03) :1098-1102
[10]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292