Growth of graphene underlayers by chemical vapor deposition

被引:13
作者
Fabiane, Mopeli [1 ]
Khamlich, Saleh [1 ]
Bello, Abdulhakeem [1 ]
Dangbegnon, Julien [1 ]
Momodu, Damilola [1 ]
Johnson, A. T. Charlie [2 ]
Manyala, Ncholu [1 ]
机构
[1] Univ Pretoria, SARChI Chair in Carbon Technol & Mat, Inst Appl Mat, Dept Phys, ZA-0028 Pretoria, South Africa
[2] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
LARGE-AREA; RAMAN-SPECTROSCOPY; GRAPHITE FILMS; CARBON; TRANSITION; SUBSTRATE; HYDROGEN; COPPER;
D O I
10.1063/1.4834975
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called "inverted wedding cake" stacking in multilayer graphene growth. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
Acheson E.G., 1896, US Patent, Patent No. [568.323, 568323]
[2]   Transformation of other forms of carbon into graphite [J].
Arsem, WC .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY-US, 1911, 3 :799-804
[3]   PYROLYTIC CARBON FORMATION FROM CARBON SUBOXIDE [J].
BANERJEE, BC ;
WALKER, PL ;
HIRT, TJ .
NATURE, 1961, 192 (480) :450-&
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[6]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[7]   Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001) [J].
Cui, Yi ;
Fu, Qiang ;
Bao, Xinhe .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (19) :5053-5057
[8]   Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy [J].
Fang, Wenjing ;
Hsu, Allen L. ;
Caudillo, Roman ;
Song, Yi ;
Birdwell, A. Glen ;
Zakar, Eugene ;
Kalbac, Martin ;
Dubey, Madan ;
Palacios, Tomas ;
Dresselhaus, Millie S. ;
Araujo, Paulo T. ;
Kong, Jing .
NANO LETTERS, 2013, 13 (04) :1541-1548
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Two dimensional graphite films on metals and their intercalation [J].
Gall, NR ;
RutKov, EV ;
Tontegode, AY .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (16) :1865-1911