Magnetite and the Verwey transition, from -rays to low-energy electrons

被引:4
作者
de la Figuera, Juan [1 ]
Marco, Jose F. [1 ]
机构
[1] Inst Quim Fis, E-28006 Madrid, Spain
来源
HYPERFINE INTERACTIONS | 2019年 / 240卷 / 1期
关键词
Magnetite; Surfaces; Magnetism; Low-energy electrons; Low-energy electron microscopy; Mossbauer spectroscopy; Verwey transition; SURFACE-STRUCTURE; SINGLE-CRYSTAL; MOSSBAUER; FE3O4; BEHAVIOR; FILMS; ANISOTROPY;
D O I
10.1007/s10751-019-1577-8
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Magnetite, a semiconducting ferrimagnetic iron spinel with a metal-insulator phase transition, the Verwey transition, has long been the subject of Mossbauer spectroscopy studies, which continue today. We review the current status of the understanding of the Mossbauer spectra of magnetite. Furthermore, magnetite is a very attractive material in current topics such as spintronics. In this particular subject, to determine the behavior of magnetic domains is paramount, and the changes ocurring on the near surface region upon undergoing the Verwey transition are relevant. In order to advance in this area, we have incorporated some new techniques, namely microscopy observations made with low-energy electrons. These observations can be performed upon changing the temperature, and can provide magnetic contrast through the use of spin-polarized electrons. By this means, we have observed the ferroelastic transformation associated with the Verwey transition, discovered an order-disorder transition of the (001) surface of magnetite and observed the changes in the magnetic domains on the same surface by changing the temperature. Low-energy electrons also are the key to the Mossbauer experiments of magnetite films and surfaces, with the promise of providing surface-sensitive spatially resolved Mossbauer spectra.
引用
收藏
页数:15
相关论文
共 56 条
[1]  
[Anonymous], 1989, MOSSBAUER SPECTROSCO, P59
[2]   CUBIC MAGNETIC-ANISOTROPY OF NONSTOICHIOMETRIC MAGNETITE [J].
ARAGON, R .
PHYSICAL REVIEW B, 1992, 46 (09) :5334-5338
[3]   Order-disorder phase transition on the (100) surface of magnetite [J].
Bartelt, Norman C. ;
Nie, Shu ;
Starodub, Elena ;
Bernal-Villamil, Ivan ;
Gallego, Silvia ;
Vergara, Lucia ;
McCarty, Kevin F. ;
de la Figuera, Juan .
PHYSICAL REVIEW B, 2013, 88 (23)
[4]  
Bauer Ernst., 2014, Surface Microscopy with Low Energy Electrons
[5]   STUDY OF LOW-TEMPERATURE TRANSITION IN MAGNETITE AND INTERNAL FIELDS ACTING ON IRON NUCLEI IN SOME SPINEL FERRITES, USING MOSSBAUER ABSORPTION [J].
BAUMINGER, R ;
OFER, S ;
SEGAL, E ;
MARINOV, A ;
COHEN, SG .
PHYSICAL REVIEW, 1961, 122 (05) :1447-&
[6]   57Fe Mossbauer spectroscopic examination of a single crystal of Fe3O4 [J].
Berry, FJ ;
Skinner, S ;
Thomas, MF .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (01) :215-220
[7]   Subsurface cation vacancy stabilization of the magnetite (001) surface [J].
Bliem, R. ;
McDermott, E. ;
Ferstl, P. ;
Setvin, M. ;
Gamba, O. ;
Pavelec, J. ;
Schneider, M. A. ;
Schmid, M. ;
Diebold, U. ;
Blaha, P. ;
Hammer, L. ;
Parkinson, G. S. .
SCIENCE, 2014, 346 (6214) :1215-1218
[8]   The structure of magnetite and the spinels. [J].
Bragg, WH .
NATURE, 1915, 95 :561-561
[9]   Effect of low Zn doping on the Verwey transition in magnetite single crystals: Mossbauer spectroscopy and x-ray diffraction [J].
Chlan, V ;
Zukrowski, J. ;
Bosak, A. ;
Kakol, Z. ;
Kozlowski, A. ;
Tarnawski, Z. ;
Keznicek, R. ;
Stepankova, H. ;
Novak, P. ;
Bialo, I ;
Honig, J. M. .
PHYSICAL REVIEW B, 2018, 98 (12)
[10]  
Cornell R.M., 1997, The Iron Oxides