Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI

被引:67
作者
Zhong, Xinran [1 ,2 ]
Cao, Ruiming [1 ,3 ]
Shakeri, Sepideh [1 ]
Scalzo, Fabien [4 ]
Lee, Yeejin [1 ]
Enzmann, Dieter R. [1 ]
Wu, Holden H. [1 ,2 ]
Raman, Steven S. [1 ]
Sung, Kyunghyun [1 ,2 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Radiol Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Phys & Biol Med IDP, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Sch Engn, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA 90095 USA
关键词
Multi-parametric MRI; Clinically significant lesion classification; Prostate cancer; Whole-mount histopathology; PIRADS v2 score; Deep learning; VERSION; 2; BIOPSY; DIAGNOSIS; DISEASE; LESIONS; SYSTEM; RISK;
D O I
10.1007/s00261-018-1824-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThe purpose of the study was to propose a deep transfer learning (DTL)-based model to distinguish indolent from clinically significant prostate cancer (PCa) lesions and to compare the DTL-based model with a deep learning (DL) model without transfer learning and PIRADS v2 score on 3 Tesla multi-parametric MRI (3T mp-MRI) with whole-mount histopathology (WMHP) validation.MethodsWith IRB approval, 140 patients with 3T mp-MRI and WMHP comprised the study cohort. The DTL-based model was trained on 169 lesions in 110 arbitrarily selected patients and tested on the remaining 47 lesions in 30 patients. We compared the DTL-based model with the same DL model architecture trained from scratch and the classification based on PIRADS v2 score with a threshold of 4 using accuracy, sensitivity, specificity, and area under curve (AUC). Bootstrapping with 2000 resamples was performed to estimate the 95% confidence interval (CI) for AUC.ResultsAfter training on 169 lesions in 110 patients, the AUC of discriminating indolent from clinically significant PCa lesions of the DTL-based model, DL model without transfer learning and PIRADS v2 score4 were 0.726 (CI [0.575, 0.876]), 0.687 (CI [0.532, 0.843]), and 0.711 (CI [0.575, 0.847]), respectively, in the testing set. The DTL-based model achieved higher AUC compared to the DL model without transfer learning and PIRADS v2 score4 in discriminating clinically significant lesions in the testing set.ConclusionThe DeLong test indicated that the DTL-based model achieved comparable AUC compared to the classification based on PIRADS v2 score (p=0.89).
引用
收藏
页码:2030 / 2039
页数:10
相关论文
共 26 条
[1]   Transatlantic Consensus Group on active surveillance and focal therapy for prostate cancer [J].
Ahmed, Hashim U. ;
Akin, Oguz ;
Coleman, Jonathan A. ;
Crane, Sarah ;
Emberton, Mark ;
Goldenberg, Larry ;
Hricak, Hedvig ;
Kattan, Mike W. ;
Kurhanewicz, John ;
Moore, Caroline M. ;
Parker, Chris ;
Polascik, Thomas J. ;
Scardino, Peter ;
van As, Nicholas ;
Villers, Arnauld .
BJU INTERNATIONAL, 2012, 109 (11) :1636-1647
[2]  
[Anonymous], AM COLL RADIOL
[3]  
[Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[4]  
[Anonymous], 2014, R LANG ENV STAT COMP
[5]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[6]  
[Anonymous], MACH LEARN MACH LEARN
[7]  
[Anonymous], 2014, ACM INT C MULTIMEDIA
[8]   Risk of Pathologic Upgrading or Locally Advanced Disease in Early Prostate Cancer Patients Based on Biopsy Gleason Score and PSA: A Population-Based Study of Modern Patients [J].
Caster, Joseph M. ;
Falchook, Aaron D. ;
Hendrix, Laura H. ;
Chen, Ronald C. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 92 (02) :244-251
[9]   Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: The Lahey Clinic Medical Center experience and an international meta-analysis [J].
Cohen, Michael S. ;
Hanley, Robert S. ;
Kurteva, Teodora ;
Ruthazer, Robin ;
Silverman, Mark L. ;
Sorcini, Andrea ;
Hamawy, Karim ;
Roth, Robert A. ;
Tuerk, Ingolf ;
Libertino, John A. .
EUROPEAN UROLOGY, 2008, 54 (02) :371-381
[10]   Risk Stratification Among Men With Prostate Imaging Reporting and Data System Version 2 Category 3 Transition Zone Lesions: Is Biopsy Always Necessary? [J].
Felker, Ely R. ;
Raman, Steven S. ;
Margolis, Daniel J. ;
Lu, David S. K. ;
Shaheen, Nicholas ;
Natarajan, Shyam ;
Sharma, Devi ;
Huang, Jiaoti ;
Dorey, Fred ;
Marks, Leonard S. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (06) :1272-1277