Sensing with slow light in an active fiber Bragg grating

被引:0
作者
Li, Xinxin [1 ]
Qian, Kai [2 ]
Wu, Xuqiang [1 ]
Zhen, Shenglai [1 ]
Li, Shidong [2 ]
Qiu, Da [2 ]
Dong, Xiaojie [2 ]
Yu, Benli [1 ]
Zhan, Li [3 ]
机构
[1] Anhui Univ, Key Lab Optoelect Informat Acquisit & Manipulat, Minist Educ, Hefei 230601, Anhui, Peoples R China
[2] Hubei Univ Nationalities, Sch Informat Engn, Enshi 445000, Hubei, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Phys, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
来源
2017 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY ADVANCED OPTICAL SENSORS AND APPLICATIONS | 2017年 / 10618卷
基金
中国国家自然科学基金;
关键词
fiber sensor; slow light; active fiber Bragg grating; phase-shifted sensitivity; CROSS-GAIN MODULATION; GROUP-VELOCITY; OPTICAL-FIBER; DELAY; PROPAGATION; AMPLIFIER; GAP;
D O I
10.1117/12.2300534
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The phase-shifted sensitivity of an interferometer can be enhanced by increasing the group index. In this paper, we experimentally demonstrate a slow light sensor by placing an active fiber Bragg grating (FBG) in one arm of the Michelson's interferometer. A 25 KHz AC voltage was applied to a piezoelectric (PZT) set nearby the active FBG. Once the wavelength is varied to near the FBG band edge, the maximum phase-shifted amplitude appears, which is about 1.8 rad and is 4 times greater than that when wavelength is near the center of the reflection band. The active FBG is pumped by a 980 nm laser diode, which can help us to stabilize the system works in the slow light regime to obtain the maximum phase shift. It provides a very simple approach to increase the phase-shifted sensitivity, which is likely to have important applications for strain and acoustic sensors.
引用
收藏
页数:6
相关论文
共 19 条
  • [1] Observation of ultraslow light propagation in a ruby crystal at room temperature
    Bigelow, MS
    Lepeshkin, NN
    Boyd, RW
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (11) : 4
  • [2] Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering
    Dahan, D
    Eisenstein, G
    [J]. OPTICS EXPRESS, 2005, 13 (16): : 6234 - 6249
  • [3] Light speed reduction to 17 metres per second in an ultracold atomic gas
    Hau, LV
    Harris, SE
    Dutton, Z
    Behroozi, CH
    [J]. NATURE, 1999, 397 (6720) : 594 - 598
  • [4] Slow light in periodic superstructure Bragg gratings
    Janner, D
    Galzerano, G
    Della Valle, G
    Laporta, P
    Longhi, S
    Belmonte, M
    [J]. PHYSICAL REVIEW E, 2005, 72 (05):
  • [5] Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap
    Longhi, S.
    Marano, M.
    Laporta, P.
    Belmonte, M.
    Crespi, P.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04): : 1 - 045602
  • [6] Dispersionless slow light using gap solitons
    Mok, Joe T.
    de Sterke, C. Martijn
    Littler, Ian C. M.
    Eggleton, Benjamin J.
    [J]. NATURE PHYSICS, 2006, 2 (11) : 775 - 780
  • [7] Tunable all-optical delays via Brillouin slow light in an optical fiber
    Okawachi, Y
    Bigelow, MS
    Sharping, JE
    Zhu, ZM
    Schweinsberg, A
    Gauthier, DJ
    Boyd, RW
    Gaeta, AL
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (15)
  • [8] Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation
    Qian, K.
    Zhan, L.
    Zhang, L.
    Zhu, Z. Q.
    Peng, J. S.
    Gu, Z. C.
    Hu, X.
    Luo, S. Y.
    Xia, Y. X.
    [J]. OPTICS LETTERS, 2011, 36 (12) : 2185 - 2187
  • [9] Tunable slow and fast light in double-Lorentzian active fiber Bragg gratings
    Qian, Kai
    Gao, Lin
    Xu, Jian
    Yu, Weichuang
    Liao, Honghua
    [J]. OPTIK, 2016, 127 (23): : 11406 - 11410
  • [10] Tunable delay slow-light in an active fiber Bragg grating
    Qian, Kai
    Zhan, Li
    Li, Honggen
    Hu, Xiao
    Peng, Junsong
    Zhang, Liang
    Xia, Yuxing
    [J]. OPTICS EXPRESS, 2009, 17 (24): : 22217 - 22222