A non-parametric estimation approach in the investigation of spectral statistics

被引:7
|
作者
Jafarizadeh, M. A. [1 ,2 ]
Fouladi, N. [3 ]
Sabri, H. [3 ]
Maleki, B. R. [3 ]
机构
[1] Univ Tabriz, Dept Theoret Phys & Astrophys, Tabriz 51664, Iran
[2] Res Inst Fundamental Sci, Tabriz 51664, Iran
[3] Univ Tabriz, Dept Nucl Phys, Tabriz 51664, Iran
关键词
Kernel density estimation (KDE); Nearest neighbor spacing distribution (NNSD); Kullback-Leibler divergence (KLD) measure; Interacting boson model (IBM); DENSITY-ESTIMATION; QUANTUM CHAOS; SPACINGS; NUMBER;
D O I
10.1007/s12648-013-0311-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have used kernel density estimation (KDE) technique to analyze the spectral statistics of nuclear systems with emphasis on the nearest neighbor spacing distribution. The deviations to regular and chaotic dynamics are described by closer distances to Poisson and Wigner limits, respectively which have calculated via Kullback-Leibler divergence measure. The level statistics of nuclei provide empirical evidences for three dynamical symmetry limits of interacting boson model, considering oblate and prolate nuclei. The predictions of KDE technique suggest a considerable reduction in the uncertainties of chaocity degrees and also more regular dynamics in comparison with other estimation methods for considered systems.
引用
收藏
页码:919 / 927
页数:9
相关论文
共 50 条
  • [1] A geometric approach to non-parametric density estimation
    Browne, Matthew
    PATTERN RECOGNITION, 2007, 40 (01) : 134 - 140
  • [2] An adaptive approach to non-parametric estimation of dynamic probability density functions
    Pana, Cristian
    Severi, Stefano
    de Abreu, Giuseppe Thadeu Freitas
    PROCEEDINGS OF THE 2016 13TH WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATIONS (WPNC), 2016,
  • [3] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92
  • [4] Non-parametric Density Estimation Based on Label Semantics
    Lawry, Jonathan
    Gonzalez-Rodriguez, Ines
    SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 183 - +
  • [5] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [6] Preadjusted non-parametric estimation of a conditional distribution function
    Veraverbeke, Noel
    Gijbels, Irene
    Omelka, Marek
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 399 - 438
  • [7] On non-parametric estimation of the Levy kernel of Markov processes
    Uetzhoefer, Florian A. J.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) : 3663 - 3709
  • [8] A non-parametric approach to anomaly detection in hyperspectral images
    Veracini, Tiziana
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    de Ceglie, Sergio U.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [9] Non-parametric estimation for aggregated functional data for electric load monitoring
    Dias, Ronaldo
    Garcia, Nancy L.
    Martarelli, Angelo
    ENVIRONMETRICS, 2009, 20 (02) : 111 - 130
  • [10] A Bayesian non-parametric approach for automatic clustering with feature weighting
    Paul, Debolina
    Das, Swagatam
    STAT, 2020, 9 (01):