A COMPLEX DATA BASED BUILDING EDGE DETECTOR FOR TANDEM-X MISSION

被引:0
作者
Baselice, Fabio [1 ]
Ferraioli, Giampaolo [1 ]
Reale, Diego
机构
[1] Univ Napoli Parthenope, Dipartimeto Tecnol, Naples, Italy
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Markov Random Field; Bayesian Estimation Theory; Edge Detection; TanDEM-X Mission;
D O I
10.1109/IGARSS.2012.6352079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Markov Random Fields (MRF) are a powerful and wide adopted tool in image processing. MRFS together with Bayesian Estimation Theory can be used for detecting edges of man made structures in Synthetic Aperture Radar images. In this paper we present a method developed in the Markovian-Bayesian framework which is particularly suited to work in case of high coherence SAR interferometric images pairs, such as TanDEM-X Mission data. A real case study, consisting of a pair of complex TerraSAR-X images, is presented, showing the performances of the algorithm.
引用
收藏
页码:6629 / 6632
页数:4
相关论文
共 8 条
[1]   Statistical Edge Detection in Urban Areas Exploiting SAR Complex Data [J].
Baselice, Fabio ;
Ferraioli, Giampaolo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (02) :185-189
[2]   Field Map Reconstruction in Magnetic Resonance Imaging Using Bayesian Estimation [J].
Baselice, Fabio ;
Ferraioli, Giampaolo ;
Shabou, Aymen .
SENSORS, 2010, 10 (01) :266-279
[3]   Multichannel InSAR Building Edge Detection [J].
Ferraioli, Giampaolo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1224-1231
[4]   Optimum edge detection in SAR [J].
Oliver, CJ ;
Blacknell, D ;
White, RG .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1996, 143 (01) :31-40
[5]  
Shabou A., 2012, GEOSCIENCE REMOTE SE
[6]  
Stan Z.L., 2001, Markov random field modeling in image analysis
[7]  
Tison C, 2004, INT GEOSCI REMOTE SE, P1788
[8]  
Touzi R., 1988, GEOSCIENCE REMOTE SE, V26