Polarizability effects in molecular dynamics simulations of the graphene-water interface

被引:109
作者
Ho, Tuan A. [1 ]
Striolo, Alberto [1 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
关键词
LIQUID WATER; GRAPHITE; SILICA; POLARIZATION; SOLVATION; NANOTUBES; SHEETS; MODEL; FILMS;
D O I
10.1063/1.4789583
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of including the polarizability of both water and graphene in molecular dynamics simulations of the water/graphene system was quantified. A thin film of either rigid single point charge extended (SPC/E) water or polarizable simple 4-site water model with Drude polarizability (SWM4_DP) water on non-polarizable and polarizable graphene surfaces was simulated. The graphene surface was either maintained neutral or charged, positively and negatively. The results suggest that SPC/E and SWM4_DP water models yield very similar predictions for the water structural properties on neutral non-polarizable graphene, although they yield slightly different dynamical properties of interfacial water on neutral non-polarizable graphene. More pronounced were the differences obtained when graphene was modeled with a polarizable force field. In particular, the polarizability of graphene was found to enhance the number of interfacial SWM4_DP water molecules pointing one of their OH bonds towards the neutral surface. Despite this structural difference, the dynamical properties predicted for the interfacial SWM4_DP water were found to be independent on polarizability as long as the polarizability of a carbon atom is smaller than alpha = 0.878 angstrom. On charged graphene surfaces, the effect of polarizability of graphene on structural properties and some dynamical properties of SWM4_DP water is negligible because electrostatic forces due to surface charge dominate polarization forces, as expected. For all cases, our results suggest that the hydrogen bond network is insensitive to the polarizability of both water and graphene. Understanding how these effects will determine the accumulation of ions near neutral or charged graphene could have important implications for applications in the fields of energy storage and water desalination. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789583]
引用
收藏
页数:9
相关论文
共 50 条
[1]  
Allen M.P., 2004, COMPUTER SIMULATION
[2]   Molecular Structure and Dynamics in Thin Water Films at Metal Oxide Surfaces: Magnesium, Aluminum, and Silicon Oxide Surfaces [J].
Anh Phan ;
Ho, Tuan A. ;
Cole, D. R. ;
Striolo, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (30) :15962-15973
[3]   Molecular structure and dynamics in thin water films at the silica and graphite surfaces [J].
Argyris, Dimitrios ;
Tummala, Naga Rajesh ;
Striolo, Alberto ;
Cole, David R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (35) :13587-13599
[4]   Dynamic Behavior of Interfacial Water at the Silica Surface [J].
Argyris, Dimitrios ;
Cole, David R. ;
Striolo, Alberto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) :19591-19600
[5]   Hydration Structure on Crystalline Silica Substrates [J].
Argyris, Dimitrios ;
Cole, David R. ;
Striolo, Alberto .
LANGMUIR, 2009, 25 (14) :8025-8035
[6]   Graphene-based hybrid materials and devices for biosensing [J].
Artiles, Mayra S. ;
Rout, Chandra Sekhar ;
Fisher, Timothy S. .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (14-15) :1352-1360
[7]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[8]   Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions [J].
Brown, Matthew A. ;
D'Auria, Raffaella ;
Kuo, I. -F. William ;
Krisch, Maria J. ;
Starr, David E. ;
Bluhm, Hendrik ;
Tobias, Douglas J. ;
Hemminger, John C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (32) :4778-4784
[9]   Polarization of water in the first hydration shell of K+ and Ca2+ ions [J].
Bucher, Denis ;
Kuyucak, Serdar .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (35) :10786-10790
[10]   Atomistic simulation of ion solvation in water explains surface preference of halides [J].
Caleman, Carl ;
Hub, Jochen S. ;
van Maaren, Paul J. ;
van der Spoel, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) :6838-6842