Design of biocomposite materials for bone tissue regeneration

被引:218
作者
Basha, Rubaiya Yunus [1 ]
Kumar, Sampath T. S. [2 ]
Doble, Mukesh [1 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Madras 600036, Tamil Nadu, India
[2] Indian Inst Technol, Dept Met & Mat Engn, Madras 600036, Tamil Nadu, India
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 57卷
关键词
Biocomposites; Natural polymers; Bone scaffolds; Tissue regeneration; Ceramic micro/nanoparticles; BIPHASIC CALCIUM-PHOSPHATE; MESENCHYMAL STEM-CELLS; PHOSPHATIDYLSERINE COMPOSITE SCAFFOLDS; NANO-HYDROXYAPATITE; HYALURONIC-ACID; SMALL MOLECULES; IN-VITRO; CHITOSAN; NANOCOMPOSITES; CERAMICS;
D O I
10.1016/j.msec.2015.07.016
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:452 / 463
页数:12
相关论文
共 121 条
[1]   Production of polyhydroxyalkanoates: the future green materials of choice [J].
Akaraonye, Everest ;
Keshavarz, Tajalli ;
Roy, Ipsita .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2010, 85 (06) :732-743
[2]   Osteoinductive Small Molecules: Growth Factor Alternatives for Bone Tissue Engineering [J].
Aravamudhan, Aja ;
Ramos, Daisy M. ;
Nip, Jonathan ;
Subramanian, Aditi ;
James, Roshan ;
Harmon, Matthew D. ;
Yu, Xiaojun ;
Kumbar, Sangamesh G. .
CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (19) :3420-3428
[3]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[4]   TWO BONE SUBSTITUTES ANALYZED IN VITRO BY PORCINE AND HUMAN ADIPOSE-DERIVED STROMAL CELLS [J].
Arrigoni, E. ;
Niada, S. ;
Ferreira, L. M. ;
De Girolamo, L. ;
Brini, A. T. .
INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2013, 26 :51-59
[5]   Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction [J].
Barbani, Niccoletta ;
Guerra, Giulio D. ;
Cristallini, Caterina ;
Urciuoli, Patrizia ;
Avvisati, Riccardo ;
Sala, Alessandro ;
Rosellini, Elisabetta .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (01) :51-61
[6]   Application of β-1,3-glucan in production of ceramics-based elastic composite for bone repair [J].
Belcarz, Anna ;
Ginalska, Grazyna ;
Pycka, Teodozja ;
Zima, Aneta ;
Slosarczyk, Anna ;
Polkowska, Izabela ;
Paszkiewicz, Zofia ;
Piekarczyk, Wojciech .
CENTRAL EUROPEAN JOURNAL OF BIOLOGY, 2013, 8 (06) :534-548
[7]   Role of amniotic fluid mesenchymal cells engineered on MgHA/collagen-based scaffold allotransplanted on an experimental animal study of sinus augmentation [J].
Berardinelli, Paolo ;
Valbonetti, Luca ;
Muttini, Aurelio ;
Martelli, Alessandra ;
Peli, Renato ;
Zizzari, Vincenzo ;
Nardinocchi, Delia ;
Vulpiani, Michele Podaliri ;
Tete, Stefano ;
Barboni, Barbara ;
Piattelli, Adriano ;
Mattioli, Mauro .
CLINICAL ORAL INVESTIGATIONS, 2013, 17 (07) :1661-1675
[8]   Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds [J].
Bhumiratana, Sarindr ;
Grayson, Warren L. ;
Castaneda, Andrea ;
Rockwood, Danielle N. ;
Gil, Eun S. ;
Kaplan, David L. ;
Vunjak-Novakovic, Gordana .
BIOMATERIALS, 2011, 32 (11) :2812-2820
[9]   Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties [J].
Cai, Xuan ;
Tong, Hua ;
Shen, Xinyu ;
Chen, Weixuan ;
Yan, Juan ;
Hu, Jiming .
ACTA BIOMATERIALIA, 2009, 5 (07) :2693-2703
[10]   Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration [J].
Cardoso, D. Alves ;
van den Beucken, J. J. J. P. ;
Both, L. L. H. ;
Bender, J. ;
Jansen, J. A. ;
Leeuwenburgh, S. C. G. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (03) :808-817