Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment

被引:0
作者
Calderon-Ramon, C. [1 ]
Gomez-Aguilar, J. F. [2 ]
Rodriguez-Achach, M. [3 ]
Morales-Mendoza, L. J. [1 ]
Laguna-Camacho, J. R. [1 ]
Benavides-Cruz, M. [1 ]
Cruz-Orduna, M. I. [1 ]
Gonzalez-Lee, M. [1 ]
Perez-Meana, H. [4 ]
Enciso-Aguilar, M. [5 ]
Chavez-Perez, R. [6 ]
Martinez-Garcia, H. [1 ]
机构
[1] Univ Veracruzana, Fac Ingn Elect & Comunicac, Fac Ingn Mecan & Elect, Poza Rica, Veracruz, Mexico
[2] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Cuernavaca, Morelos, Mexico
[3] Univ Veracruzana, Fac Fis, Xalapa 91000, Veracruz, Mexico
[4] Escuela Super Ingn Mecan & Elect Culhuacan, Mexico City, DF, Mexico
[5] UPALM, Dept Telecomunicac, Escuela Super Ingn Mecan & Elect Zacatenco, Ensenada, Baja California, Mexico
[6] Ctr Invest Cient & Educ Super Ensenada, Ensenada, Baja California, Mexico
关键词
Conductor electric perfect conditions (PEC); finite difference time domain method (FDTD); perfectly matched layers (PML); antenna array; diffractor; MATCHED LAYER; EQUATIONS; MODEL;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we present a computational electromagnetic simulation of a multiform diffractor placed at the center of an antenna array. Our approach is to solve Maxwell's differential equations with a discrete space-time formulation, using the Finite Difference Time Domain (FDTD) method. The Perfectly Matched Layers (PML) method is used as an absorbing boundary condition, to prevent further spread of the electromagnetic wave to the outside of the calculation region. The Perfect Electric Conductor (PEC) boundary conditions are used to represent the periphery of the region and the diffractor. The system consists of an antenna array of 20 elements: a transmission antenna (TX1) which feeds a Gaussian pulse with center frequency of 7.5 GHz, and 19 reception antennas (RX1 to RX19), which serve as sensors. The diferactor is discretized for integration into the environment FDTD, and two case studies are presented according to their geometric shape: square and circular diffractor. In this work, the goal is to determine the Maxwell's equations, analyze all the zones that form the diffractor and plug them in the computational algorithm in Matlab. We show the equations for each case and obtain the electromagnetic parameters of the system: electric fields, magnetic fields, and reflected power, sensed by the RX's.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 16 条
  • [1] [Anonymous], 2000, ELECTROMAGNETIC SIMU, DOI DOI 10.1109/9780470544518
  • [2] Benavides A., 2010, PROGR EL RES S PIER
  • [3] Benavides M, 2011, REV MEX FIS E, V57, P25
  • [4] Parametric Analysis of Perfect Matched Layer Model of Finite Difference Time Domain Method
    Benavides-Cruz, M.
    Nieto-Rodriguez, M.
    Enciso-Aguilar, M.
    Galaz-Larios, M.
    Sosa-Pedroza, J.
    [J]. ELECTROMECHANICAL AND SYSTEMS ENGINEERING, 2009, 15 : 139 - 144
  • [5] Benavides-Cruz M., 2011, THESIS SEPI ESIME
  • [6] Evanescent waves in PML's:: Origin of the numerical reflection in wave-structure interaction problems
    Bérenger, JP
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (10) : 1497 - 1503
  • [7] Perfectly matched layer for the FDTD solution of wave-structure interaction problems
    Berenger, JP
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (01) : 110 - 117
  • [8] A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES
    BERENGER, JP
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) : 185 - 200
  • [9] Calderón Celia M, 2014, Inf. tecnol., V25, P41, DOI [10.4067/s0718-07642014000100006, 10.4067/S0718-07642014000100006]
  • [10] Calderon-Ramon C., 2015, THESIS SEPI ESIME