Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review

被引:868
作者
Wenderich, Kasper [1 ]
Mul, Guido [1 ]
机构
[1] Univ Twente, Photocatalyt Synth Grp, MESA Inst Nanotechnol, Fac Sci & Technol, Meander 229,POB 217, NL-7500 AE Enschede, Netherlands
关键词
VISIBLE-LIGHT IRRADIATION; CATALYSTS STRUCTURAL PECULIARITIES; PHOTOCHEMICAL HYDROGEN-PRODUCTION; ENHANCED RAMAN-SCATTERING; AQUEOUS-METHANOL SOLUTION; IN-SITU PHOTODEPOSITION; ENERGY-DISPERSIVE XAFS; Z-SCHEME PHOTOCATALYST; ZNO NANOROD ARRAYS; H-2; EVOLUTION;
D O I
10.1021/acs.chemrev.6b00327
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this review, for a variety of metals and semiconductors, an attempt is made to generalize observations in the literature on the effect of process conditions applied during photodeposition on (i) particle size distributions, (11) oxidation states of the metals obtained, and (iii) consequences for photocatalytic activities. Process parameters include presence or absence of (organic) sacrificial agents, applied pH, presence or absence of an air/inert atmosphere, metal precursor type and concentration, and temperature. Most intensively reviewed are studies concerning (i) TiO2; (ii) ZnO, focusing on Ag deposition; (iii) WO3, with a strong emphasis on the photodeposition of Pt; and (iv) CdS, again with a focus on deposition of Pt. Furthermore, a detailed overview is given of achievements in structure-directed photodeposition, which could ultimately be employed to obtain highly effective photocatalytic materials. Finally, we provide suggestions for improvements in description of the photodeposition methods applied when included in scientific papers.
引用
收藏
页码:14587 / 14619
页数:33
相关论文
共 302 条
[1]   Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 -/I- [J].
Abe, R ;
Sayama, K ;
Sugihara, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :16052-16061
[2]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[3]   Overall Water Splitting under Visible Light through a Two-Step Photoexcitation between TaON and WO3 in the Presence of an Iodate-Iodide Shuttle Redox Mediator [J].
Abe, Ryu ;
Higashi, Masanobu ;
Domen, Kazunari .
CHEMSUSCHEM, 2011, 4 (02) :228-237
[4]   Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments [J].
Ahmed, Saber ;
Rasul, M. G. ;
Martens, Wayde N. ;
Brown, R. ;
Hashib, M. A. .
DESALINATION, 2010, 261 (1-2) :3-18
[5]   Facile preparation of Ag/ZnO nanoparticles via photoreduction [J].
Alammar, Tarek ;
Mudring, Anja-Verena .
JOURNAL OF MATERIALS SCIENCE, 2009, 44 (12) :3218-3222
[6]   Controlled Fabrication of Colloidal Semiconductor-Metal Hybrid Heterostructures: Site Selective Metal Photo Deposition [J].
Alemseghed, Mussie G. ;
Ruberu, T. Purnima A. ;
Vela, Javier .
CHEMISTRY OF MATERIALS, 2011, 23 (15) :3571-3579
[7]   Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation [J].
Amano, Fumiaki ;
Ishinaga, Eri ;
Yamakata, Akira .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (44) :22584-22590
[8]   Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles [J].
Aminian, Mohsen Khajeh ;
Ye, Jinhua .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (01) :141-148
[9]   Complete oxidation of acetaldehyde and toluene over a Pd/WO3 photocatalyst under fluorescent- or visible-light irradiation [J].
Arai, Takeo ;
Horiguchi, Masumi ;
Yanagida, Masatoshi ;
Gunji, Takahiro ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
CHEMICAL COMMUNICATIONS, 2008, (43) :5565-5567
[10]   The enhancement of WO3-catalyzed photodegradation of organic substances utilizing the redox cycle of copper ions [J].
Arai, Takeo ;
Yanagida, Masatoshi ;
Konishi, Yoshinari ;
Ikura, Ami ;
Iwasaki, Yasukazu ;
Sugihara, Hideki ;
Sayama, Kazuhiro .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 84 (1-2) :42-47