Network Structure Change Point Detection by Posterior Predictive Discrepancy

被引:1
作者
Bian, Lingbin [1 ]
Cui, Tiangang [1 ]
Sofronov, Georgy [2 ]
Keith, Jonathan [1 ]
机构
[1] Monash Univ, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
[2] Macquarie Univ, 12 Wallys Walk, Sydney, NSW 2109, Australia
来源
MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018 | 2020年 / 324卷
基金
澳大利亚研究理事会;
关键词
Bayesian inference; Networks; Sliding window; Stochastic block model; Gibbs sampling; BAYESIAN-INFERENCE; MODEL; CONNECTIVITY;
D O I
10.1007/978-3-030-43465-6_5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Detecting changes in network structure is important for research into systems as diverse as financial trading networks, social networks and brain connectivity. Here we present novel Bayesian methods for detecting network structure change points. We use the stochastic block model to quantify the likelihood of a network structure and develop a score we call posterior predictive discrepancy based on sliding windows to evaluate the model fitness to the data. The parameter space for this model includes unknown latent label vectors assigning network nodes to interacting communities. Monte Carlo techniques based on Gibbs sampling are used to efficiently sample the posterior distributions over this parameter space.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 34 条
  • [1] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [2] Robust detection of dynamic community structure in networks
    Bassett, Danielle S.
    Porter, Mason A.
    Wymbs, Nicholas F.
    Grafton, Scott T.
    Carlson, Jean M.
    Mucha, Peter J.
    [J]. CHAOS, 2013, 23 (01)
  • [3] Dynamic reconfiguration of human brain networks during learning
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Porter, Mason A.
    Mucha, Peter J.
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) : 7641 - 7646
  • [4] Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    Chang, Catie
    Glover, Gary H.
    [J]. NEUROIMAGE, 2010, 50 (01) : 81 - 98
  • [5] Multiple-change-point detection for high dimensional time series via sparsified binary segmentation
    Cho, Haeran
    Fryzlewicz, Piotr
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (02) : 475 - 507
  • [6] Estimating whole-brain dynamics by using spectral clustering
    Cribben, Ivor
    Yu, Yi
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (03) : 607 - 627
  • [7] Detecting functional connectivity change points for single-subject fMRI data
    Cribben, Ivor
    Wager, Tor D.
    Lindquist, Martin A.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2013, 7
  • [8] Dynamic connectivity regression: Determining state-related changes in brain connectivity
    Cribben, Ivor
    Haraldsdottir, Ragnheidur
    Atlas, Lauren Y.
    Wager, Tor D.
    Lindquist, Martin A.
    [J]. NEUROIMAGE, 2012, 61 (04) : 907 - 920
  • [9] A mixture model for random graphs
    Daudin, J. -J.
    Picard, F.
    Robin, S.
    [J]. STATISTICS AND COMPUTING, 2008, 18 (02) : 173 - 183
  • [10] Detection and localization of change points in temporal networks with the aid of stochastic block models
    De Ridder, Simon
    Vandermarliere, Benjamin
    Ryckebusch, Jan
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,