Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions

被引:9
作者
Qu, Peng [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 139卷
关键词
Time-periodic solution; Quasilinear hyperbolic system; Time-periodic boundary condition; Asymptotic stability; FEEDBACK STABILIZATION; LYAPUNOV STABILITY; EQUATIONS; STATE;
D O I
10.1016/j.matpur.2019.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For quasilinear hyperbolic systems with time-periodic boundary conditions possessing a dissipative structure, the existence, uniqueness and stability of the time-periodic classical solutions are proved. Moreover, the feedback boundary control with dissipative structure can stabilize the system around the time-periodic solution, provided that the time-periodic boundary conditions are W-2,W-infinity smooth. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:356 / 382
页数:27
相关论文
共 23 条
  • [11] THE EFFECT OF BOUNDARY DAMPING FOR THE QUASILINEAR WAVE-EQUATION
    GREENBERG, JM
    LI, TT
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (01) : 66 - 75
  • [12] Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms
    Gugat, Martin
    Perrollaz, Vincent
    Rosier, Lionel
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (03) : 1471 - 1500
  • [13] NEUMANN BOUNDARY FEEDBACK STABILIZATION FOR A NONLINEAR WAVE EQUATION: A STRICT H2-LYAPUNOV FUNCTION
    Gugat, Martin
    Leugering, Guenter
    Wang, Ke
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) : 419 - 448
  • [14] Boundary feedback stabilization of the telegraph equation: Decay rates for vanishing damping term
    Gugat, Martin
    [J]. SYSTEMS & CONTROL LETTERS, 2014, 66 : 72 - 84
  • [15] BOUNDARY EXPONENTIAL STABILIZATION OF 1-DIMENSIONAL INHOMOGENEOUS QUASI-LINEAR HYPERBOLIC SYSTEMS
    Hu, Long
    Vazquez, Rafael
    Di Meglio, Florent
    Krstic, Miroslav
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) : 963 - 998
  • [16] SHARP TIME ESTIMATES FOR EXACT BOUNDARY CONTROLLABILITY OF QUASILINEAR HYPERBOLIC SYSTEMS
    Hu, Long
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) : 3383 - 3410
  • [17] Li T-T., 1985, Boundary Value Problems for Quasilinear Hyperbolic Systems, VV
  • [18] Asymptotic Stability of Equilibrium State to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems
    Li, Yanzhao
    Liu, Cunming
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (03) : 323 - 344
  • [19] PEGO RL, 1988, STUD APPL MATH, V79, P263
  • [20] QIN TH, 1985, CHINESE ANN MATH B, V6, P289