Optimization of the OPLS-AA Force Field for Long Hydrocarbons

被引:517
作者
Siu, Shirley W. I. [1 ]
Pluhackova, Kristyna [1 ]
Boeckmann, Rainer A. [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Biol, D-91054 Erlangen, Germany
关键词
MOLECULAR-DYNAMICS SIMULATIONS; POTENTIAL FUNCTIONS; ORGANIC-COMPOUNDS; SELF-DIFFUSION; LIQUID WATER; N-ALKANES; GAS-PHASE; SOLVATION; SYSTEM; MODEL;
D O I
10.1021/ct200908r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The all-atom optimized potentials for liquid simulations (OPLS-AA) force field is a popular force field for simulating biomolecules. However, the current OPLS parameters for hydrocarbons developed using short alkanes cannot reproduce the liquid properties of long alkanes in molecular dynamics simulations. Therefore, the extension of OPLS-AA to (phospho)lipid molecules required for the study of biological membranes was hampered in the past. Here, we optimized the OPLS-AA force field for both short and long hydrocarbons. Following the framework of the OPLS-AA parametrization, we refined the torsional parameters for hydrocarbons by fitting to the gas-phase ab initio energy profiles calculated at the accurate MP2/aug-cc-pVTZ theory level. Additionally, the depth of the Lennard-Jones potential for methylene hydrogen atoms was adjusted to reproduce the densities and the heats of vaporization of alkanes and alkenes of different lengths. Optimization of partial charges finally allowed to reproduce the gel-to-liquid-phase transition temperature for pentadecane and solvation free energies. It is shown that the optimized parameter set (L-OPLS) yields improved hydrocarbon diffusion coefficients, viscosities, and gauche-trans ratios. Moreover, its applicability for lipid bilayer simulations is shown for a GMO bilayer in its liquid-crystalline phase.
引用
收藏
页码:1459 / 1470
页数:12
相关论文
共 57 条
[1]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[2]  
Allen MP, 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
[3]  
Apol E., 2010, GROMACS USER MANUAL: Version 4.5.4
[4]   SOLVATION THERMODYNAMICS OF NONIONIC SOLUTES [J].
BENNAIM, A ;
MARCUS, Y .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (04) :2016-2027
[5]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[6]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[7]   Microscopy, SAXD, and NMR studies of phase behavior of the monoolein-diolein-water system [J].
Borné, J ;
Nylander, T ;
Khan, A .
LANGMUIR, 2000, 16 (26) :10044-10054
[8]  
Briggs J, 1996, J PHYS II, V6, P723, DOI 10.1051/jp2:1996208
[9]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[10]   POSITIONAL DEPENDENCE OF SOLVENT EFFECTS ON THE CONFORMATION OF LIQUID N-ALKANES - AN INFRARED SPECTROSCOPIC STUDY [J].
CASAL, HL ;
MANTSCH, HH .
JOURNAL OF MOLECULAR STRUCTURE, 1989, 192 (1-2) :41-45