High sensitivity of the continental-weathering carbon dioxide sink to future climate change

被引:0
作者
Beaulieu, E. [1 ]
Godderis, Y. [1 ]
Donnadieu, Y. [2 ]
Labat, D. [1 ]
Roelandt, C. [3 ,4 ]
机构
[1] Univ Toulouse 3, Observ Midi Pyrenees, CNRS, F-31400 Toulouse, France
[2] CEA Orme Merisiers, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[3] Univ Bergen, Inst Geophys, N-5007 Bergen, Norway
[4] Bjerknes Ctr Climate Res, N-5007 Bergen, Norway
关键词
NET PRIMARY PRODUCTION; ATMOSPHERIC CO2; IMPACT; RUNOFF; VEGETATION;
D O I
10.1038/NCLIMATE1419
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
According to future anthropogenic emission scenarios, the atmospheric CO2 concentration may double before the end of the twenty-first century(1). This increase is predicted to result in a global warming of more than 6 degrees C in the worst case(1). The global temperature increase will promote changes in the hydrologic cycle through redistributions of rainfall patterns and continental vegetation cover(1,2). All of these changes will impact the chemical weathering of continental rocks. Long considered an inert CO2 consumption flux at the century timescale, recent works have demonstrated its potential high sensitivity to the ongoing climate and land-use changes(3,4). Here we show that the CO2 consumption flux related to weathering processes increases by more than 50% for an atmospheric CO2 doubling for one of the most important Arctic watersheds: the Mackenzie River Basin. This result has been obtained using a process-based model of the chemical weathering of continental surfaces forced by models describing the atmospheric general circulation and the dynamic of the vegetation(5,6) under increased, atmospheric CO2. Our study stresses the potential role that weathering may play in the evolution of the global carbon cycle over the next centuries.
引用
收藏
页码:346 / 349
页数:4
相关论文
共 30 条
  • [1] Amiotte-Suchet P., 2003, GLOB BIOGEOCHEM CYCL, V17
  • [2] Modeling of water-rock interaction in the Mackenzie basin: Competition between sulfuric and carbonic acids
    Beaulieu, E.
    Godderis, Y.
    Labat, D.
    Roelandt, C.
    Calmels, D.
    Gaillardet, J.
    [J]. CHEMICAL GEOLOGY, 2011, 289 (1-2) : 114 - 123
  • [3] Impact of atmospheric CO2 levels on continental silicate weathering
    Beaulieu, E.
    Godderis, Y.
    Labat, D.
    Roelandt, C.
    Oliva, P.
    Guerrero, B.
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2010, 11
  • [4] Forests and climate change: Forcings, feedbacks, and the climate benefits of forests
    Bonan, Gordon B.
    [J]. SCIENCE, 2008, 320 (5882) : 1444 - 1449
  • [5] Erosion of Deccan Traps determined by river geochemistry:: impact on the global climate and the 87Sr/86Sr ratio of seawater
    Dessert, C
    Dupré, B
    François, LM
    Schott, J
    Gaillardet, J
    Chakrapani, G
    Bajpai, S
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2001, 188 (3-4) : 459 - 474
  • [6] Basalt weathering laws and the impact of basalt weathering on the global carbon cycle
    Dessert, C
    Dupré, B
    Gaillardet, J
    François, LM
    Allègre, CJ
    [J]. CHEMICAL GEOLOGY, 2003, 202 (3-4) : 257 - 273
  • [7] Modelling the primary control of paleogeography on Cretaceous climate
    Donnadieu, Y.
    Pierrehumbert, R.
    Jacob, R.
    Fluteau, F.
    [J]. EARTH AND PLANETARY SCIENCE LETTERS, 2006, 248 (1-2) : 426 - 437
  • [8] Exploring the climatic impact of the continental vegetation on the Mezosoic atmospheric CO2 and climate history
    Donnadieu, Y.
    Godderis, Y.
    Bouttes, N.
    [J]. CLIMATE OF THE PAST, 2009, 5 (01) : 85 - 96
  • [9] Francois LM, 1998, GLOBAL PLANET CHANGE, V17, P37
  • [10] Isotopic constraints on the Cenozoic evolution of the carbon cycle
    Francois, LM
    Godderis, Y
    [J]. CHEMICAL GEOLOGY, 1998, 145 (3-4) : 177 - 212