Arc length estimation and the convergence of polynomial curve interpolation

被引:17
作者
Floater, MS [1 ]
机构
[1] Univ Oslo, Inst Informat, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
curve parameterization; curve length; arc length; Lagrange interpolation; Hermite interpolation; approximation order;
D O I
10.1007/s10543-005-0031-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
When fitting parametric polynomial curves to sequences of points or derivatives we have to choose suitable parameter values at the interpolation points. This paper investigates the effect of the parameterization on the approximation order of the interpolation. We show that chord length parameter values yield full approximation order when the polynomial degree is at most three. We obtain full approximation order for arbitrary degree by developing an algorithm which generates more and more accurate approximations to arc length: the lengths of the segments of an interpolant of one degree provide parameter intervals for interpolants of degree two higher. The algorithm can also be used to estimate the length of a curve and its arc-length derivatives.
引用
收藏
页码:679 / 694
页数:16
相关论文
共 18 条
[1]  
Ahlberg JH., 1967, The Theory of Splines and Their Applications
[2]  
Conte Samuel Daniel, 2017, Elementary Numerical Analysis, An Algorithmic Approach
[3]  
de Boor C., 1987, Computer-Aided Geometric Design, V4, P269, DOI 10.1016/0167-8396(87)90002-1
[4]   HIGH ACCURATE RATIONAL APPROXIMATION OF PARAMETRIC CURVES [J].
DEGEN, WLF .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :293-313
[5]  
do Carmo P., 1976, Differential Geometry of Curves and Surfaces
[6]  
Dokken T., 1990, Computer-Aided Geometric Design, V7, P33, DOI 10.1016/0167-8396(90)90019-N
[7]  
DOKKEN T, 1979, BIT, V19, P540
[8]   INFLUENCE OF PARAMETRIZATION IN PARAMETRIC INTERPOLATION [J].
EPSTEIN, MP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :261-268
[9]   An O(h(2n)) Hermite approximation for conic sections [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (02) :135-151
[10]   A parametric quartic spline interpolant to position, tangent and curvature [J].
Grandine, TA ;
Hogan, TA .
COMPUTING, 2004, 72 (1-2) :65-78