Vertices, vortices & interacting surface operators

被引:56
作者
Bonelli, Giulio [1 ]
Tanzini, Alessandro
Zhao, Jian
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
Supersymmetric gauge theory; Nonperturbative Effects; Conformal and W Symmetry; Topological Strings; CONFORMAL BLOCKS; SYMMETRY;
D O I
10.1007/JHEP06(2012)178
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the vortex moduli space in non-abelian supersymmetric N = (2, 2) gauge theories on the two dimensional plane with adjoint and anti-fundamental matter can be described as an holomorphic submanifold of the instanton moduli space in four dimensions. The vortex partition functions for these theories are computed via equivariant localization. We show that these coincide with the field theory limit of the topological vertex on the strip with boundary conditions corresponding to column diagrams. Moreover, we resum the field theory limit of the vertex partition functions in terms of generalized hypergeometric functions formulating their AGT dual description as interacting surface operators of simple type. Analogously we resum the topological open string amplitudes in terms of q-deformed generalized hypergeometric functions proving that they satisfy appropriate finite difference equations.
引用
收藏
页数:22
相关论文
共 62 条
[1]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[2]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[3]  
Aganagic M, 2002, Z NATURFORSCH A, V57, P1
[4]   Affine SL(2) Conformal Blocks from 4d Gauge Theories [J].
Alday, Luis F. ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) :87-114
[5]  
Alday LF, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)113
[6]   Liouville Correlation Functions from Four-Dimensional Gauge Theories [J].
Alday, Luis F. ;
Gaiotto, Davide ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) :167-197
[7]  
[Anonymous], ARXIV09084052
[8]  
[Anonymous], ARXIV10052846
[9]  
[Anonymous], 1998, Progr. Math., V160, P141
[10]  
[Anonymous], ARXIV09042715