Dynamic flux balance analysis of whole-body metabolism for type 1 diabetes

被引:13
作者
Ben Guebila, Marouen [1 ]
Thiele, Ines [2 ,3 ,4 ,5 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] Natl Univ Ireland, Sch Med, Galway, Ireland
[3] Natl Univ Ireland, Sch Nat Sci, Discipline Microbiol, Galway, Ireland
[4] APC Microbiome, Cork, Ireland
[5] Natl Univ Ireland, Ryan Inst, Galway, Ireland
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 05期
基金
欧洲研究理事会;
关键词
INSULIN-RESISTANCE; GLUT4; GENE; EXPRESSION; MODEL; MIBEFRADIL; PHENOTYPE; CALCIUM;
D O I
10.1038/s43588-021-00074-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Type 1 diabetes (T1D) mellitus is a systemic disease triggered by a local autoimmune inflammatory reaction in insulin-producing cells that induce organ-wide, long-term metabolic effects. Mathematical modeling of the whole-body regulatory bihormonal system has helped to identify therapeutic interventions but is limited to a coarse-grained representation of metabolism. To extend the depiction of T1D, we developed a whole-body model of organ-specific regulation and metabolism that highlighted chronic inflammation as a hallmark of the disease, identified processes related to neurodegenerative disorders and suggested calcium channel blockers as adjuvants for diabetes control. In addition, whole-body modeling of a patient population allowed for the assessment of between-individual variability to insulin and suggested that peripheral glucose levels are degenerate biomarkers of the internal metabolic state. Taken together, the organ-resolved, dynamic modeling approach enables modeling and simulation of metabolic disease at greater levels of coverage and precision and the generation of hypothesis from a molecular level up to the population level.
引用
收藏
页码:348 / 361
页数:14
相关论文
共 64 条
  • [1] High Glucose Variability Increases Mortality Risk in Hospitalized Patients
    Akirov, Amit
    Diker-Cohen, Talia
    Masri-Iraqi, Hiba
    Shimon, Ilan
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2017, 102 (07) : 2230 - 2241
  • [2] Global organization of metabolic fluxes in the bacterium Escherichia coli
    Almaas, E
    Kovács, B
    Vicsek, T
    Oltvai, ZN
    Barabási, AL
    [J]. NATURE, 2004, 427 (6977) : 839 - 843
  • [3] Amer Diabet Assoc, 2010, DIABETES CARE, V33, pS11, DOI [10.2337/dc10-S011, 10.2337/dc13-S011, 10.2337/dc13-S067, 10.2337/dc10-S062, 10.2337/dc12-s064, 10.2337/dc14-S081, 10.2337/dc11-S062, 10.2337/dc11-S011, 10.2337/dc12-s011]
  • [4] Type 1 diabetes
    Atkinson, Mark A.
    Eisenbarth, George S.
    Michels, Aaron W.
    [J]. LANCET, 2014, 383 (9911) : 69 - 82
  • [5] Preclinical Assessment of Lisdexamfetamine as an Agonist Medication Candidate for Cocaine Addiction: Effects in Rhesus Monkeys Trained to Discriminate Cocaine or to Self-Administer Cocaine in a Cocaine Versus Food Choice Procedure
    Banks, Matthew L.
    Hutsell, Blake A.
    Blough, Bruce E.
    Poklis, Justin L.
    Negus, S. Stevens
    [J]. INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2015, 18 (08) : 1 - 10
  • [6] The Pros and Cons of Diagnosing Diabetes With A1C
    Bonora, Enzo
    Tuomilehto, Jaakko
    [J]. DIABETES CARE, 2011, 34 : S184 - S190
  • [7] Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics
    Bordbar, Aarash
    Yurkovich, James T.
    Paglia, Giuseppe
    Rolfsson, Ottar
    Sigurjonsson, Olafur E.
    Palsson, Bernhard O.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Recon3D enables a three-dimensional view of gene variation in human metabolism
    Brunk, Elizabeth
    Sahoo, Swagatika
    Zielinski, Daniel C.
    Altunkaya, Ali
    Drager, Andreas
    Mih, Nathan
    Gatto, Francesco
    Nilsson, Avlant
    Gonzalez, German Andres Preciat
    Aurich, Maike Kathrin
    Prlic, Andreas
    Sastry, Anand
    Danielsdottir, Anna D.
    Heinken, Almut
    Noronha, Alberto
    Rose, Peter W.
    Burley, Stephen K.
    Fleming, Ronan M. T.
    Nielsen, Jens
    Thiele, Ines
    Palsson, Bernhard O.
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (03) : 272 - +
  • [9] Enrichr: interactive and collaborative HTML']HTML5 gene list enrichment analysis tool
    Chen, Edward Y.
    Tan, Christopher M.
    Kou, Yan
    Duan, Qiaonan
    Wang, Zichen
    Meirelles, Gabriela Vaz
    Clark, Neil R.
    Ma'ayan, Avi
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [10] Pancreatic Inflammation Redirects Acinar to β Cell Reprogramming
    Clayton, Hannah W.
    Osipovich, Anna B.
    Stancill, Jennifer S.
    Schneider, Judsen D.
    Vianna, Pedro G.
    Shanks, Carolyn M.
    Yuan, Weiping
    Gu, Guoqiang
    Manduchi, Elisabetta
    Stoeckert, Christian J., Jr.
    Magnuson, Mark A.
    [J]. CELL REPORTS, 2016, 17 (08): : 2028 - 2041