Subunit interactions in ABC transporters: towards a functional architecture

被引:176
作者
Jones, PM [1 ]
George, AM [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Dept Cell & Mol Biol, Sydney, NSW 2007, Australia
关键词
ABC transporter; ATP-binding domain; C motif; histidine P dimer; P-glycoprotein;
D O I
10.1111/j.1574-6968.1999.tb08727.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough reward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 62 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   BACTERIAL PERIPLASMIC PERMEASES BELONG TO A FAMILY OF TRANSPORT PROTEINS OPERATING FROM ESCHERICHIA-COLI TO HUMAN - TRAFFIC ATPASES [J].
AMES, GF ;
MIMURA, CS ;
SHYAMALA, V .
FEMS MICROBIOLOGY LETTERS, 1990, 75 (04) :429-446
[3]  
AMES GF, 1992, ADV ENZYMOL RAMB, V65, P1
[4]   Characterization of the human multidrug resistance protein containing mutations in the ATP-binding cassette signature region [J].
Bakos, E ;
Klein, I ;
Welker, E ;
Szabo, K ;
Muller, M ;
Sarkadi, B ;
Varadi, A .
BIOCHEMICAL JOURNAL, 1997, 323 :777-783
[5]   FUNCTIONAL DISSECTION OF P-GLYCOPROTEIN NUCLEOTIDE-BINDING DOMAINS IN CHIMERIC AND MUTANT PROTEINS - MODULATION OF DRUG-RESISTANCE PROFILES [J].
BEAUDET, L ;
GROS, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17159-17170
[6]   Mutations in the nucleotide-binding sites of P-glycoprotein that affect substrate specificity modulate substrate-induced adenosine triphosphatase activity [J].
Beaudet, L ;
Urbatsch, IL ;
Gros, P .
BIOCHEMISTRY, 1998, 37 (25) :9073-9082
[7]  
BELLAMY W, 1994, LAB INVEST, V71, P716
[8]   Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation [J].
Bernstein, BE ;
Michels, PAM ;
Hol, WGJ .
NATURE, 1997, 385 (6613) :275-278
[9]   Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology:: Structural model of the nucleotide binding domains of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) [J].
Bianchet, MA ;
Ko, YH ;
Amzel, LM ;
Pedersen, PL .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1997, 29 (05) :503-524
[10]  
BIBI E, 1994, J BIOL CHEM, V269, P19910