BIFURCATION OF SOLUTIONS OF THE SECOND ORDER BOUNDARY VALUE PROBLEMS IN HILBERT SPACES

被引:1
作者
Boichuk, A. A. [1 ]
Pokutnyi, O. O. [1 ]
机构
[1] NAS Ukraine, Inst Math, Lab Boundary Value Problems Differential Equat Th, Tereshenkivska 3, UA-01024 Kiev, Ukraine
关键词
bifurcation; resonance case; Moore-Penrose pseudoinverse operator; generalized solution; hyperbolic equation; DIFFERENTIAL-EQUATIONS;
D O I
10.18514/MMN.2019.2862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bifurcations conditions of solutions of perturbed linear boundary value problems in the Hilbert spaces for the second order evolution equation are obtained.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 9 条
[1]  
Anderson D. W., 1967, K-Theory
[2]   Estimates of solutions of certain classes of second-order differential equations in a Hilbert space [J].
Artamonov, NV .
SBORNIK MATHEMATICS, 2003, 194 (7-8) :1113-1123
[3]   PERTURBATION THEORY OF OPERATOR EQUATIONS IN THE FR,CHET AND HILBERT SPACES [J].
Boichuk, A. A. ;
Pokutnyi, A. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2016, 67 (09) :1327-1335
[4]  
Boichuk A.A., 2016, Generalized Inverse Operators and Fredholm Boundary Value Problems, V2nd
[5]  
Boichuk A, 2007, TATRA MT MATH PUBL, V38, P29
[6]   Solutions of the Schrodinger equation in a Hilbert space [J].
Boichuk, Alexander ;
Pokutnyi, Oleksander .
BOUNDARY VALUE PROBLEMS, 2014,
[7]  
Da Prato G., 2002, 2 ORDER PARTIAL DIFF, DOI [10.1112/S0024609303242776, DOI 10.1112/S0024609303242776]
[8]  
Klyushin DA, 2012, SPRINGER OPTIM APPL, V55, P1, DOI 10.1007/978-1-4614-0619-8
[9]  
Vishik M. I., 1960, Russian Mathematical Surveys, V15, P1, DOI [DOI 10.1070/RM1960V015N03ABEH004092, 10.1070/rm1960v015n03abeh004092]