Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites

被引:83
作者
Araujo, A. [1 ,2 ]
Botelho, G. y [1 ]
Oliveira, M. [2 ]
Machado, A. V. [2 ]
机构
[1] Univ Minho, Ctr Chem, Dept Chem, P-4710057 Braga, Portugal
[2] Univ Minho, IPC, I3N, P-4800058 Guimaraes, Portugal
关键词
Thermo-oxidative degradation; PLA; Nanocomposites; Clay minerals; POLY(LACTIC ACID) NANOCOMPOSITES; POLYLACTIDE/MONTMORILLONITE NANOCOMPOSITES; SILICATE NANOCOMPOSITES; DEGRADATION; MONTMORILLONITE; POLY(L-LACTIDE); POLYLACTIDE; MORPHOLOGY; POLYMERS; KINETICS;
D O I
10.1016/j.clay.2013.12.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly(lactic acid) (PLA) is a biodegradable aliphatic thermoplastic polyester well known for being a promising alternative to petroleum-based materials since it can be produced from renewable resources. Although this polymer has good properties when compared to other biodegradable polymers, it presents some limitations like poor thermal, mechanical resistance and gas barrier. The incorporation of clay minerals has been used as a way to overcome this problem. The present work aims to investigate the influence of clay organic modifier (Cloisite 30B, Cloisite 15A and Dellite 43B) and amount (3 and 5%) on PLA thermal stability. PLA and PLA nanocomposites were submitted to thermo-oxidative degradation at 140 degrees C during 120 h. Samples removed along the time were characterized by gel permeation chromatography (GPC), scanning electron microscopy (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (H-1 NMR), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). After degradation, even though all samples exhibited a significant decrease of molecular weight, it was smaller for nanocomposites. As a consequence of chain scission an increase in the crystallinity degree was observed for all nanocomposites. Results showed that clay mineral incorporation, mainly D43B enhanced the polymer thermal stability. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 150
页数:7
相关论文
共 38 条
[1]   Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide) [J].
Badia, J. D. ;
Stromberg, E. ;
Ribes-Greus, A. ;
Karlsson, S. .
EUROPEAN POLYMER JOURNAL, 2011, 47 (07) :1416-1428
[2]   Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers [J].
Bikiaris, D. .
THERMOCHIMICA ACTA, 2011, 523 (1-2) :25-45
[3]   Nano-biocomposites: Biodegradable polyester/nanoclay systems [J].
Bordes, Perrine ;
Pollet, Eric ;
Averous, Luc .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (02) :125-155
[4]   Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition [J].
Carrasco, F. ;
Gamez-Perez, J. ;
Santana, O. O. ;
Maspoch, M. Ll. .
CHEMICAL ENGINEERING JOURNAL, 2011, 178 :451-460
[5]   Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties [J].
Carrasco, F. ;
Pages, P. ;
Gamez-Perez, J. ;
Santana, O. O. ;
Maspoch, M. L. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (02) :116-125
[6]   Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica(II) [J].
Chang, JH ;
An, YU ;
Cho, DH ;
Giannelis, EP .
POLYMER, 2003, 44 (13) :3715-3720
[7]   Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability [J].
Chang, JH ;
An, YU ;
Sur, GS .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (01) :94-103
[8]   Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites [J].
Chow, W. S. ;
Lok, S. K. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 95 (02) :627-632
[9]   Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites [J].
Fukushima, K. ;
Tabuani, D. ;
Dottori, M. ;
Armentano, I. ;
Kenny, J. M. ;
Camino, G. .
POLYMER DEGRADATION AND STABILITY, 2011, 96 (12) :2120-2129
[10]   Biodegradation of poly(lactic acid) and its nanocomposites [J].
Fukushima, K. ;
Abbate, C. ;
Tabuani, D. ;
Gennari, M. ;
Camino, G. .
POLYMER DEGRADATION AND STABILITY, 2009, 94 (10) :1646-1655